WiFi 8: What is it, What’s the Spec and When Will it Be Released?

As a society we’re always keen to get our hands on the latest technology – But no sooner as it’s in our hands, thoughts are already turning to what’s next. 

You might have barely got to grips with Wi-Fi 6, but with 233 million Wi-Fi 7 devices estimated to enter the market this year, is it any wonder we’re already looking ahead to Wi-Fi 8?

What is Wi-Fi 8?

Simply put, it’s the next generation of Wi-Fi and will be successor to the Wi-Fi 7 (IEEE 802.11be) standard. 

As with previous Wi-Fi standard successions, the aim of Wi-Fi 8 will be to improve wireless performance as well as introduce new and innovative features to advance Wi-Fi technology further. 

Generally this means that in comparison to previous standards, the new one will offer:

  • Faster speeds
  • Lower latency
  • Better performance 

What’s the spec for Wi-Fi 8?

We don’t actually know the specifications of Wi-Fi 8 yet as the details haven’t been officially released. 

But would it even be a technological advancement if there wasn’t speculation on the specifications? 

We are expecting the technical details for Wi-Fi 8 to be finalised and released imminently.

What can we expect from Wi-Fi 8?

Over the years we’ve seen a steady evolution of Wi-Fi standards, with each one playing its own vital role in providing our indoor and outdoor environments with seamless wireless connectivity. 

As the Internet of Things has also evolved over time, each standard has of course had its inadequacies, with a constant push for better. 

So what will the upcoming Wi-Fi 8 standard offer to help with the current connectivity challenges we’ve been facing? 

Wi-Fi 8 is expected to offer us a range of powerful new features and capabilities, designed to provide high-reliability, ultra low latency and support for extremely high node density.

A few of the major features we’re expecting from Wi-Fi 8 are:

  • Multiple Access Point Coordination and Transmission
  • Millimeter Wave (mmWave) Frequencies
  • Low Latency

So let’s take a little look at each of these major Wi-Fi 8 features and what they mean. 

What is Multiple Access Point (AP) Coordination and Transmission for Wi-Fi 8?

When a network has multiple access points deployed, e.g. in buildings and office complexes, they operate on the same radio frequency. This can cause interference and the degradation of network performance. To help alleviate this, the transmissions of the access points can be configured to avoid overlapping channels and coordinated accordingly.

Multiple Access Point (AP) coordination and transmission in Wi-Fi refers to the management of multiple access points in a wireless network to avoid interference and ensure efficient communication between the client devices and the network. 

We can ensure that transmissions do not interfere with each other by using coordination techniques for Access Points. This could look like: 

  • Channel Allocation: Interference can be minimised by configuring Access points to use non-overlapping channels. This can be done manually or automatically using techniques such as Dynamic Frequency Selection (DFS).
  • Power Management: Interference can be avoided by configuring Access points to adjust their transmission power based on their proximity to other access points.
  • Load Balancing: Network loads can be balanced through configuring Access points by directing clients to connect to the least congested access point.

How can Millimetre Wave Links improve Wi-Fi 8?

Improvements in Wi-Fi 8 can be made using mmWave by providing access to a larger spectrum of frequencies. This in turn allows for higher bandwidth and data rates. 

By using mmWave, Wi-Fi 8 can support data rates of up to 100 Gbps. What would this be useful for? This feature would be perfect for things like 4K and 8K video streaming as well as virtual and augmented reality. Other high-bandwidth and low-latency applications like these would also benefit. 

Performance improvements will also be seen in environments with high node density with mmWave technology. Places like stadiums and concert halls will benefit from better coverage with Wi-Fi 8 as well as the reduction of interference between devices.  

Information on a Project Authorisation Request document suggests that Ultra High Reliability technology will be a key part of Wi-Fi 8. It looks like it will be capable of support carrier frequencies in the mmWave bands between 42.5 and 71 GHz and achieving an aggregate throughput of 100 Gbps. 

In comparison to Wi-Fi 7, it’s expected that UHR will offer improvements in maximum latency and jitter for latency-sensitive applications, especially those in the 99 to 99.9999th percentile range. 

Wi-Fi 8 and Low Latency

Why is low latency so important? In this day and age, our modern industries rely on Wi-Fi in many industrial applications, e.g. real-time control systems, remote monitoring, robotic automation. Without fast and reliable communication between devices, the performance of these applications would degrade and cause big problems. 

Even the smallest of delays in data transmission can cause significant errors or delays further down the system, affecting response time as well as negatively impacting production processes and potentially even causing safety issues. 

The amount of data generated and transmitted over Wi-Fi networks is increasing rapidly as more industrial applications adopt the Industrial Internet of Things (IIoT) and other advanced technologies. 

In order for this data to be transmitted accurately and quickly, it’s crucial that there is low latency to reduce delays and bottlenecks. 

Previously, a latency of under 25 ms was achieved with Wi-Fi 7, using Restricted Target Wake Time (R-TWT), Stream Classification Service (SCS) and Quality of Service (QoS) signalling. However, this standard falls short of the current demands of industrial applications which need latencies of less than a few milliseconds. 

Thankfully, the Wi-Fi world is expecting UHR to enhance and improve things in this area by minimising the maximum latency of Wi-Fi. 

When will we be using Wi-Fi 8?

It’s estimated and expected that Wi-Fi 8 could become a market reality in 2027/2028. 

Watch this space! 

What’s the difference between LTE and 5G?

There has been much hype surrounding 5G, relentlessly for years. Now as part of a global rollout we see 5G available in most major cities as well as some towns and more rural areas. Soon enough, we’ll be using 5G just as we use 4G as the standard.

But 5G is still new to the wireless scene. And for some, the question is – Do we really need 5G when we’ve got LTE?

Many of us are still depending on long-term evolution technology. Indeed, there are only a few areas in the UK that don’t have any LTE presence.

What is LTE?

LTE was first launched back in 2009, and whilst it took a number of years to become part of our national connectivity fabric, it is still now a standard for wireless communications.

The reason for its staying power is down to its reliability and stability – Leading many wireless users to wonder if they even need to move over to 5G.

What is the difference between 4G LTE and 5G?

It was necessary to identify LTE as an element of the 4G standard as many telecoms companies weren’t actually able to provide 4G speeds due to infrastructure. The regulator ITU-R (International Telegraph Union Radiocommunication) established LTE as a standard to show the progress being made towards true 4G.

The download/upload speeds of a particular standard can be different in theory and in practise. Whilst in theory, 4G LTE can achieve data transfer speeds of up to 150Mbps for downloading content and 50Mbps for upload speeds, in practise is is more likely to be 20Mbps and 10Mbps respectively.

These figures will vary depending on:

  • Location
  • Network deployment
  • Traffic

How does 5G compare to 4G LTE in terms of download speeds?

5G connectivity offers theoretical download speeds of up to 10Gbps. A pretty staggering difference! Of course in practise, it may not reach this, but even real-world examples seem to still be dwarfing the speeds of 4G LTE.

Why does 5G reach higher speeds?

5G uses a different spectrum to 4G – Called mmWave which are high-frequency bands. The higher speeds are mostly reached because these high frequency bands support more bandwidth than the ones that LTE uses. This means that more data can be transferred at once.

5G can also use frequencies above low-band but lower than 6GHz. Despite these not supporting the highest possible speeds, they will still outclass 4G LTE. It’s worth noting that 5G coverage could be further expanded by using connectivity below 6GHz, especially as walls and surfaces can block mmWave frequencies.

Basically, 5G uses a different spectrum to 4G LTE and thus:

  • Delivers stronger, faster connections
  • Has a higher capacity for traffic
  • Has low latency (1ms)

Sounds too good to be true doesn’t it! It’s worth remembering that the rollout of 5G is still in its infancy, and therefore coverage is still limited. Before the big networks like EE, Three and Vodafone can deliver the top scope of what 5G has to offer, more work needs to be done.

So should we be choosing LTE or 5G?

As with most techy things, there are lots of factors, such as:

  • Your budget
  • Where you’re based
  • What your connectivity needs are – Personal or business

The more countries adopt and expand their 5G infrastructure, the more 5G-friendly hardware we will start to see. The best way to know whether to choose LTE or 5G is seeing what is on the market and whether it meets your needs.

You may find that some of the 5G devices available don’t have a 4G alternative. You may also find that they are rather on the pricey side! So definitely shop around.

Of course, the more 5G devices we see on the market, the more we will see the prices start to come down. So the time for adopting 5G over LTE may not be quite yet. Patience could also serve you more of the promises 5G has to offer – The more the 5G coverage continues to expand, the higher the speeds and the more consistent the connection to mmWave networks.

Since 2019, we’ve seen prices start to come down as competition in the market starts to heat up, but 5G is still costly. If you have a big budget then you could just go for it now, but we feel like the overall coverage, packages and prices will continue to rapidly improve. We’re inclined to hold out a bit longer and stick to LTE for the time being.

What about 5G for business?

If your business relies on heavily on connected sensors and other similar IoT networks then 5G may be the network you’ve been waiting for. The bandwidth and low latency that 5G could bring to your business cannot be easily ignored.

Think driverless cars navigation and smart sensors – 5G could well be the communications technology that will enable some great and creative deployments.

What are the health concerns associated with 5G?

With 5G comes questions about whether it could harm our health. Do you remember when mobile phones were beginning to emerge into mainstream use and there was much anxiety about what the radio waves were doing to our health? Mobile telephone has never been without concerns, but 5G seems to have evoked more than its fair share of health worries.

The installation of 5G masts have been banned in multiple UK locations. And it’s not just parts of the UK that are opposed to 5G – Back in 2017 180 scientists from 36 different countries made a public appea to the EU to pause their plans of 5G expansion whilst investigations were carried out looking at the long-term effects on human health.

Whilst both 4G and 5G use radio waves, 5G uses higher frequency waves. It’s these high frequency waves that provide better network capacity and speed.

Studies that have looked into any potential health risks from 5G haven’t seemed to identify any specific danger from 5G.

What is the future for LTE and 5G?

With the rise of 5G comes potentially society-changing connectivity – Like self-driving cars.

But technological advances can be slow if not steady. Whilst there is definitely potential for 5G to take over, it could take considerable time for 5G-enabled devices to really take hold of the market. Even from the likes of Apple!

There is still space for 4G LTE in our networks, and whilst it may be 5G’s predecessor, it’s not going anywhere just yet.

Research from Ericsson suggests that the dominant cellular network technology seen in most regions globally is still 4G LTE. 78% of mobile subscriptions in Western Europe in fact! Just because the 5G rollout is well underway, doesn’t mean that everyone will immediately jump ship and drop 4G LTE. It’s expected that 4G LTE will still be the dominant network even 5 years from now.

By 2026 Western Europe is predicted to be using 5G in 69% of all mobile subscriptions. However, Ericssons findings suggest that even as 5G usage surges, 4G LTE won’t automatically decline. It’s even predicted that 4G LTE availability will grow, with global coverage of 95% by 2026, with 5G only seeing 60% in those 5 years.

There is no denying that 5G is the future for telecoms. But by the time we are all accustomed to using it, 6G might well be on the way! Despite 5G becoming more prevalent as time passes, we still think there’s no need to be abandoning 4G just yet.