Why Wi-Fi Almost Didn’t Connect At All

It’s hard to imagine a time or place when you couldn’t quickly check your emails or have a scroll through Instagram. Isn’t it the most frustrating thing when you hit a Wi-Fi deadspot? No connection, nothing, no matter how many times you reload the page. We are so accustomed to working remotely (I’m actually looking out at the solent whilst typing this!) and taking the internet with you wherever you go, it’s very difficult to contemplate a life without Wi-Fi and mobile connectivity.  

Did you know that Wi-Fi very nearly didn’t happen in the first place? Wi-Fi almost hit its very own deadspot – And wouldn’t that have changed our lives as we know it! So how did Wi-Fi come about?

When was Wi-Fi officially launched?

On the 25th September 1999, coming up to 25 years ago, Wi-Fi was officially launched. If you think about the fuss that’s made over a new product launch from Apple, then you might have expected the launch of Wi-Fi itself to be a rather flashy affair. 

In reality, it was a bit Big Bang Theory-esque – A convention centre in Atlanta housing 8 technophiles ready to open their jackets to reveal polo shirts emblazoned with the made-up word Wi-Fi. And all in front of a crowd of just 60 people. 

Some of the biggest tech companies, and some smaller ones too, backed the launch enthusiastically. Even the likes of Apple, Dell and Nokia could never have imagined that they were backing such a huge global phenomenon with incredible economic, social and cultural impact across the world. 

It was the summer of ‘99

Think back to the summer of 1999, if you can. The working world was mostly using wired networks via Ethernet cable. LAN’s (Local Area Networks) connected desktop computers at a rate of 10 Mbps. 

Meanwhile, those trying to send emails from home did so to the sound of a modem trying to connect to another modem via repurposed telephone infrastructure. Dial-up internet and 56 Kbps dial up modems clanked and clanged their way online. Arguments were had over who needed to use the computer and who needed to use the telephone. 

There were products for WLAN’s (Wireless Local Area Networks) but these were predominantly just for businesses. The IEEE (Institute of Electrical and Electronics Engineers) official wireless standard specification for these wireless products was 802.11. Not only were these products expensive, they were also 5 times slower than their wired equivalent. 

Despite there being a specified wireless standard, this unfortunately didn’t mean that one standards compliant wireless product would be compatible with another. This was largely due to the fact that there were different ways of interpreting the specification. 

These weaknesses meant that some companies looked elsewhere and chose to support other rival technology alliances – Each with their own aim of becoming the actual standard. 

Wi-Fi’s rival – HomeRF

One of these rival specifications was developed by a consortium of other technology giants – Compaq, Hewlett-Packard, IBM, Intel and Microsoft. Their WLAN ‘HomeRF’ was aimed at consumers (rather than businesses) and was backed by over 80 other companies. In comparison to the other standard, the HomeRF products were not only cheaper but could also communicate with each other. 

With a name like HomeRF (short for Home Radio Frequency) it arguably had a catchier name than IEEE 802.11. They didn’t just have their eyes on the consumer market – They also had big plans for expansion and higher speeds for the business market. 

Despite all of this, the second generation of the IEEE standard, 802.11b was heading steadily for its final approval at the end of September. By the end of the year, there were products due to ship from company 3Com (later acquired by HP along with Compaq). Their products were based on the newer, faster standard and set for release before 1999 ended. 

At the time, networking firm 3Com formed WECA (Wireless Ethernet Compatibility Alliance) bringing together 5 strong advocates for IEEE. Their aim was to make sure that any products using the pending second generation standard would all be compatible with each other. 

Originally tipped to be named ‘FlankSpeed’, connectivity as we know it today was trademarked as Wi-Fi. There began the establishment of the rules by which wireless products could be deemed ‘Wi-Fi Certified.’

What if Wi-Fi had not won out against HomeRF?

Wi-Fi won the wireless standard race, but what if HomeRF had in fact taken the lead? There are ways that all might not have worked out as it has. 

If the second generation standard 802.11b had been delayed, then HomeRF may have been able to sneak ahead. It was only due to a compromise between WLAN industry pioneers (and foes) Lucent Technologies and Harris Semiconductor that meant there was no delay. 

What if FlankSpeed was only available at work?

So what if WECA had decided only to focus on business connectivity? That was a discussed possibility. ‘Go anywhere’ connectivity almost wasn’t on the table. And what if ‘FlankSpeed’ had been chosen over ‘Wi-Fi’? 

A big chunk of today’s workforce rely on being able to bring work home with them. And not just home – What about coffee shops, airports, on the daily commute sitting on the train, the beach even? Nowadays we tend to take work with us wherever we go. 

Had we been using FlankSpeed at the office and HomeRF at home, this would have made things very difficult for anyone working from home. And you can forget about coffee-shop-working and catching up on emails waiting for a plane – It’s possible neither of these public access options would exist. Zones that were not home or the office would have been a no-go (or NoHO (Not Home, Not Office) for working online. Spaces that were neither office nor home would have been a connectivity no man’s land. 

And if you’re wondering about FlankSpeed and Smartphones – That would have been a no as well. The mobile world of online connectivity disappears into the mist, out of grasp. Can you imagine? No, we can’t either. 

Would it have been beneficial to have more than just one wireless standard? 

The benefits of having a singular focus on just the one standard meant that there was more scope for innovation and cost reduction. 

Even if FlankSpeed or HomeRF had gone forth alongside Wi-Fi, it couldn’t have ever become as cheap to run or prevalent and globally penetrating as Wi-Fi. 

Having a universal standard means that retail stores, public spaces and anywhere where we would now expect to be able to connect, could roll it out uninhibited. Had this not been the case, the ability to stream video whilst sipping a coffee or connect to emails whilst sitting on the train may not be available. 

Thinking on a global level, those living in emerging market countries like Nigeria, rely on free Wi-Fi hotspots to be able to connect to the rest of the world. Remote islands like the Bahamas also rely on Wi-Fi to get support following adverse weather conditions like hurricanes. In this way, Wi-Fi provides critical connections all over the world.  

HomeRF folded in 2003 – So how did Wi-Fi succeed so quickly? 

As with all well-laid plans, it’s all in the preparation and timing. With the announcement of the name Wi-Fi and the promise of certified interoperability from WECA, companies investing in this new wireless standard had the assurance that their products would all work together. 

In 2000, 86% of Wi-Fi devices were used for business. Wireless connection in businesses was big business in itself, with chipmakers and PC companies quickly hopping off the fence to support and join Wi-Fi. This led tech giants Microsoft and Intel to jump ship from HomeRF to Wi-Fi. Wireless for business soared in popularity ahead of in the home, which gave Wi-Fi chip volume a boost. This in turn led to closing the cost gap between that and HomeRF, leading it to fold in 2003. 

Since then, over the past 2 decades the Wi-Fi Alliance and IEEE have worked together to represent, guide and oversee Wi-Fi and its subsequent standards. 

The IEEE committee continues to roll-out new standards, and the WI-Fi Alliance makes sure that certified products can communicate with each other. 

So the next time you hit a Wi-Fi deadspot, or find that the Wi-Fi is down in your favourite coffee shop – Stop and breathe. Count your blessings that you can take your work with you wherever you go (mostly) and that you can largely connect via Wi-Fi wherever you need it. 

What is Beamforming and Will it Make Wireless Better?

The tech world is always evolving and looking on to the next thing – To be better, quicker, stronger. Wireless and Wi-Fi technology is no different – We want to be able to access the best possible connection – Strong, reliable and fast. 

So how does beamforming help with this? 

What is Beamforming? 

Beamforming makes Wi-Fi and 5G connections more precise by utilising the science of electromagnetic interference. 

The original concept of beamforming has actually been around since the 1940’s. In current communication standards, this tech is playing a pivotal role in improving Wi-Fi and 5G among others. 

When beamforming is used alongside MU-MIMO (Multi User Multiple Input, Multiple Output) tech, it can help users to boost their data speeds by accessing more precise connections. 

How Does Beamforming Work?

Using Beamforming means that the resulting connection is faster and more reliable. It works by focusing a wireless signal to a specific receiving device. In this instance, the signal is more focused rather than being spread in all directions like, for example, a broadcast antenna. 

Unless they are blocked by a physical object, electromagnetic waves from a single antenna will radiate in all directions. To specifically target a beam of electromagnetic energy in order to focus the signal in a certain direction, you can use multiple antennas close together to broadcast the same signal at slightly different times. 

These overlapping waves will cause interference which can be good (cause the signal to be stronger) or bad (cause th signal to become weak or undetectable). 

When done constructively and correctly, the electromagnetic waves can be focused to a specific direction – Beamforming. 

We’re going to spare you the mathematics behind the process of beamforming – It’s extremely complex. If you’re a big maths geek you can look it up online and try and wrap your head around it. 

We mentioned earlier that the actual technqiue of beamforming isn’t a new concept and has been around for over 80 years. Wi-Fi and 5G aren’t the only technologies that can benefit from beamforming – Any type of energy that travels in waves can use the concept, including sound. 

Beamforming was originally developed to help in World War II by improving sonar and is still an important part of audio engineering today. 

But let’s get back to our niche – Wi-Fi and 5G tech is where our interest in beamforming lies. 

How does beamforming help Wi-Fi 6?

Wi-Fi 6 is the latest generation of Wi-Fi (also known as 802.1ax but thankfully now with improved naming via the Wi-Fi Alliance!). It succeeds the 802.11ac Wi-Fi standard (now more aptly named Wi-Fi 5). 

In terms of Wi-Fi standards, beamforming has actually been around since Wi-Fi 4 but seen improvements in both Wi-Fi 5 and Wi-Fi 6. Beamforming uses MIMO technology to be able to send out multiple, overlapping signals. 

Since 2016, the use of beamforming with Wi-Fi 5 meant that different receivers can work with different routers, hence making the beamforming techniques used in Wi-Fi equipment are vendor-neutral. 

Beamforming can also be used alongside MU-MIMO technology, allowing multiple users to communicate simultaneously with multiple antennas on the router. Beamforming used in this way ensures that each of the connected clients are efficiently targeted by the router. Data rates and range for signals to specific clients are also improved with Wi-Fi 6 through the increased number of antennas (from 4 to 8). 

What about Wi-Fi 7? 

In the world of tech we’re always looking ahead to the next thing – So what about beamforming and WI-Fi 7? Unsurprisingly, beamforming will also be a core part of Wi-Fi 7 (802.11be).  

Coordinated beamforming will use the capability of modern multi-antenna access points to spatially multiplex their stations, as well as making adjacent neighbouring non-associated stations void.

This technique can actually be used without beamforming via a joint multi-access point sounding scheme. However, a coordinated beamforming process can take advantage of a simpler sequential sounding procedure which will be a part of Wi-Fi 7. 

As each station transmits and receives data to and from a single access point, coordinated beamforming does not require joint data processing. This helps diminish backhaul needs. 

Whilst this limits complexity, it also delivers substantial throughput and latency enhancements.

Other improvements that we’ll see with Wi-Fi 7 and coordinated beamforming will hopefully include access to gigabit speeds and low-latency communications for more busineses and consumers in various applications. 

How does beamforming help 5G? 

With the prevalance of 5G increasing with the roll out of networks for smartphones and other WANs, we’ll be seeing beamforming as a core part of the new technology. 

5G frequencies are unfortunately more prone to being disrupted by objects causing interference, like walls or other similar barriers for example. This is because 5G operates on the millimetre wavelength (mmWave) frequency. 

Beamforming helps with this by creating a more reliable connection. It does by allowing the transmitter to focus the transmission in a specific direction, as explained above. This means the signal is directed towards, for example, a mobile device, vehicle or other IoT device. 

Working with MIMO, beamforming can improve throughput and efficiency by directing beams from a 5G base station in both horizonal and vertical directions  via large numbers of antennas. 

What are the pros of beamforming?

Wi-Fi and 5G tech can really benefit from beamforming. 

  • Information can be transferred quicker and with fewer errors because the signal is of a higher quality due to being focused in a specific direction
  • Users trying to connect to other signals can benefit from less interference because beamforming can reduce and even stop broadcasting in other directions

Are there any cons when it comes to beamforming? 

Whilst beamforming can have benefits for wireless technology, some limitations can lie in the actual process of doing it. 

  • Beamforming requires big computing resources. In some situations, the beamforming calculations would require time and power resources that could make the resulting benefits less worth it
  • Improving affordability means that beamforming techniques are being built into wireless equipment on the consumer market as well as enterprise-grade wireless hardware
  • For the best performance, the transmitter and receiver need to be quite close together. The further away the receiver is from the transmitter, the more the benefits diminish

It’s pretty clear to see that beamforming is a big part of the wireless world, especially in terms of Wi-Fi 6 (and 7) as well as 5G.

Is Wi-Fi HaLow a Better Wireless Option than Wi-Fi 5 and 6 for IoT?

Wi-Fi HaLow has quite the list of benefits when it comes to Internet of Things applications. With high bandwidth, long range, unlicensed spectrum, low power, and less complexity than Wi-Fi 5 and Wi-Fi 6, Wi-Fi HaLow could well be a better option. 

What is Wi-Fi HaLow?

Image from https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-halow with thanks

The Wi-Fi Alliance has coined the IEEE 802.11ah Wi-Fi standard as Wi-Fi HaLow, as it will be known in the wireless market. It was approved back in September 2016, and then published in the following May. 

Wi-Fi HaLow is a new version of traditional Wi-Fi, offering:

  • Long range
  • Low power
  • Low speed

Wi-Fi HaLow is most likely to be deployed within the Internet of Things market, on things such as:

  • Sensors
  • Wearables
  • M2M (Machine to Machine) applications
  • Smart buildings
  • Smart cities

What are the benefits of Wi-Fi HaLow?

Wi-Fi HaLow has the ability to connect low-bandwidth devices to IP networks, including the internet. It also supports enough bandwidth to handle HD Quality video.

Perhaps one of the great things about Wi-Fi HaLow is its usefulness in rural communications as well as offloading cell phone tower traffic. 

Whilst there are similar low-power standards, like 802.11af, there are differences. For example, 802.11af operates in the television white space spectrum in VHF and UHF bands, whereas Wi-Fi HaLow is easier to deploy due to operating in the unlicensed bands. 

There are of course similar technologies that utilise the unlicensed spectrum, but Wi-Fi HaLow also has advantages over some of them due to them being built on proprietary standards. 

The requirement of getting proprietary hardware in order to get IP connectivity to the client devices also means that some other similar technologies are more complicated to deploy than Wi-Fi HaLow.

HaLow is intended to make deploying IoT devices easier.

Why is Uptake for Wi-Fi HaLow Slow?

Despite the advantages laid out above, the uptake for Wi-Fi HaLow has been pretty slow. 

If you have a look on the Product Finder section of the Wi-Fi Alliance’s website, you’ll find only 3 companies that are listed as having certified Wi-Fi HaLow products. 

And if the uptake is so low, it begs the question…

So Why Use Wi-Fi HaLow?

The advantages we talked about above hint at where Wi-Fi HaLow can be used effectively. 

Wi-Fi HaLow Utilises Licence-Exempt Frequencies

As you are probably aware, the majority of Wi-Fi technologies, including Wi-Fi 5 and Wi-Fi 6, operate at frequencies in the 2.4 and 5 GHz bands. 

The difference with Wi-Fi HaLow is that it utilises licence-exempt frequencies that are below 1 GHz. 

Wi-Fi HaLow Has Longer Range

Due to Wi-Fi HaLow having lower frequencies, it also has longer signal ranges. Not only that, but the signal itself penetrates walls and other materials better. 

Due to these reasons, Wi-Fi HaLow can travel much further, even managing distances of over half a mile (0.62 miles to be precise). 

Wi-Fi HaLow Devices Don’t Hog Bandwidth and Need Less Power

Wi-Fi HaLow devices can use lower power radios as they’re not hogging bandwidth with high performance. In other words, the devices wireless connectivity uses very little power which in turn means that they have a long battery life. Some devices can even last more than 5 years! 

Got devices on the network that need more throughput? With Wi-Fi HaLow you can give hundreds (if not thousands) of IoT wireless devices their own band to operate in – Enabling you to reserve the higher bands for those higher throughput devices. This could in turn have a positive impact on your overall network performance.

In this way, Wi-Fi HaLow compliments traditional Wi-Fi very well by enabling your network engineers to move lower bandwidth clients off the main Wi-Fi network. 

Depending on the AP capabilities and client-device specifications, Wi-Fi HaLow can still provide enough throughput for HD-quality video cameras in some scenarios, despite being designed for lower bandwidth applications. 

Do We Have the Infrastructure for Wi-Fi HaLow?

In short, yes! It’s pretty straightforward to get going with Wi-Fi HaLow. 

Whereas other similar technologies require proprietary controllers, hubs or gateways, Wi-Fi HaLow doesn’t need any of this. 

It’s as simple as plugging a HaLow Ap into a traditional LAN and clients can connect to IP-based networks including the internet. 

Alternatively, they could choose a gateway device with 4G LTE connectivity to the WAN.

Does traditional Wi-Fi support HaLow?

Currently, the HaLow band is not supported by traditional Wi-Fi like 2.4 GHz and 5 GHz. 

But, due to the longer range of HaLow, an AP deployed in the right location could mean signal coverage for an entire multi-floor office building or warehouse. 

Of course, that would also depend on:

  • Desired data rates for clients
  • Transmit powers
  • Antennas
  • Interference

To take the signal even further, without using a wired connection, you can also deploy Wi-Fi HaLow in a wireless-mesh mode. 

What are the Data Rates like for Wi-Fi HaLow? 

Bandwidth can be increased via channel-width options on Wi-Fi HaLow devices just like traditional Wi-Fi. Between 1MHz and 16MHz there are 5 channel widths, but not all devices support all the widths. 

When we talk about channels, the transmissions travel further the narrower the channel is, but at a slower data rate. 

For example, for a long range over the course of 1km on just 1MHz channel, with a bit of RF attenuation, you would see a data rate of approximately 150 kbps. 

With a shorter range and/ or a line of sight, you could in theory get 86.7 Mbps with 16 MHz channels and short guard intervals. 

One trial carried out at sea with no radio interference achieved 2 Mbps of UDP throughput at 3 km with line of sight. With this in mind, with ideal conditions could expect a data rate of a few Mbps for approximately 1.5 km range. 

How is Wi-Fi HaLow Affected by Interference?

Wi-Fi HaLow aren’t not the only unlicensed users and devices on the 900 MHz band. Historically, this band was rather crowded with cordless phones as well as amateur radio operators, although whilst they have the right to use the band they are not the primary users of the band and hence have to accept interference from other sources. 

Interference when using Wi-Fi HaLow is unlikely to cause significant issues in comparison to how many Wi-Fi 5 and Wi-Fi 6 devices are using the 2.4 GHz and 5 GHz bands. 

The competition for airtime is also a lesser concern because unlike traditional Wi-Fi devices, HaLow devices tend to deliver smaller amounts of data and less frequently. 

Is Wi-Fi HaLow Secure?

Wi-Fi HaLow is just as secure as traditional Wi-Fi devices due to supporting the same WPA3 (Wi-Fi Protected Access) security and Wi-Fi Enhanced Open functionality. 

Some devices may also support the enterprise mode of WPA3 with 802.1X authentication. Some HaLow devices may also support the legacy WPA2 security even though it isn’t required for Wi-Fi Certified products.

Is HaLow ready for enterprise deployments?

Despite there being few Wi-Fi Halow devices on the market just yet, reports are saying that they are ready for enterprise deployments now. 

Our recommendation, as with any Wi-Fi network, is to carry out a Site Survey before designing and deploying a Wi-Fi HaLow network.

For many network engineers, this is a new and unfamiliar technology so it’s imperative you do plenty of live testing and analysing to make sure the network will work effectively. This is especially important if you are going to be using Wi-Fi HaLow to serve higher bandwidth clients or over long distances. 

Strong Growth of Enterprise WLAN Market in 2023 Q1 

The International Data Corporation (IDC) Worldwide Quarterly Wireless LAN Tracker has reported that between the first quarter of 2022 and Q1 of 2023, the Enterprise Wi-Fi market has grown by 43%. 

What’s Behind the Growth of the Enterprise WLAN Market?

The driving force behind the Enterprise WLAN market growth is in part down to the easing of component shortages. 

There has also been a significant demand for the upgrades and expansions that come with Wi-Fi 6 and Wi-Fi 6E. 

You can find further details on this in IDC’s latest market report. 

Wi-Fi Market Back With a Vengeance

Previously, the right business to be in might have been as a service provider or consumer Wi-Fi. But we’ve come a long way since 2020, and from just last year even. The IDC reports that the consumer Wi-Fi segment has decreased by 8.8% for the quarter year-on-year.

The enterprise Wi-Fi market however is back and booming and showing itself to continue to grow year-on-year. 

The IDC’s recent report showed that the Enterprise Wi-Fi market grew by 43% in Q1 for 2023 (year on year). This sector is worth a huge 2.8 billion dollars. 

Is the Growth of Enterprise WLAN Market Down to Wi-Fi 6?

Of the Enterprise WLAN sector revenue, Wi-Fi 6 made up 78.6%. 

In addition to that, the adoption of Wi-Fi 6E is up by 14% from that last quarter of 2022. This continued growth has taken a 10.4% share of the AP market in Q1 of 2023. 

Cisco Expands Market Dominance

At the end of the first quarter of 2023, Cisco continued to take their Enterprise Wi-Fi market share with 47.1%. Their revenue has risen 62.7% year on year – Their Enterprise Wi-Fi revenue for this quarter was 1.3 billion US dollars. 

Also doing well in the Enterprise Wi-Fi market is HPE_Aruba (Aruba Networks). They have grown by 39.5% year on year for Q1 of 2023. The IDC reports they have a market share of 16%. 

You can check out how other vendors are doing by heading to the IDC website here

What If Wi-Fi Had Never Happened?

Isn’t it the most frustrating thing when you hit a Wi-Fi deadspot? No connection, nothing, no matter how many times you re-load the page. In this age of working from home and taking the internet with you wherever you go, it’s hard to imagine a time or place when you couldn’t quickly check your emails or have a scroll through Instagram. 

But did you know that Wi-Fi very nearly didn’t happen in the first place? Wi-Fi almost hit its very own deadspot – And wouldn’t that have changed our lives as we know it! Let’s get to the root of Wi-Fi and see how wireless internet came about.

When was Wi-Fi officially launched?

Just over 23 years ago, on the 25th September 1999, Wi-Fi was officially launched. If you think about the fuss that’s made over a new product launch from Apple, then you might have expected the launch of Wi-Fi itself to be a rather flashy affair. 

In reality, it was a bit Big Bang Theory-esque – A convention centre in Atlanta housing 8 technophiles ready to open their jackets to reveal polo shirts emblazoned with the made-up word Wi-Fi. And all in front of a crowd of just 60 people. 

Some of the biggest tech companies, and some smaller ones too, backed the launch enthusiastically. Even the likes of Apple, Dell and Nokia could never have imagined that they were backing such a huge global phenomenon with incredible economic, social and cultural impact across the world. 

It was the summer of ‘99

Think back to the summer of 1999, if you can. The working world was mostly using wired networks via Ethernet cable. LAN’s (Local Area Networks) connected desktop computers at a rate of 10 Mbps. 

Meanwhile, those trying to send emails from home did so to the sound of a modem trying to connect to another modem via repurposed telephone infrastructure. Dial up internet and 56 Kbps dial up modems clanked and clanged their way online. Arguments were had over who needed to use the computer and who needed to use the telephone. 

There were products for WLAN’s (Wireless Local Area Networks) but these were predominantly just for businesses. The IEEE (Institute of Electrical and Electronics Engineers) official wireless standard specification for these wireless products was 802.11. Not only were these products expensive, they were also 5 times slower than their wired equivalent. 

Despite there being a specified wireless standard, this unfortunately didn’t mean that one standards compliant wireless product would be compatible with another. This was largely due to the fact that there were different ways of interpreting the specification. 

These weaknesses meant that some companies looked elsewhere and chose to support other rival technology alliances – Each with their own aim of becoming the actual standard. 

Wi-Fi’s rival – HomeRF

One of these rival specifications was developed by a consortium of other technology giants – Compaq, Hewlett-Packard, IBM, Intel and Microsoft. Their WLAN ‘HomeRF’ was aimed at consumers (rather than businesses) and was backed by over 80 other companies. In comparison to the other standard, the HomeRF products were not only cheaper but could also communicate with each other. 

With a name like HomeRF (short for Home Radio Frequency) it arguably had a catchier name that IEEE 802.11. They didn’t just have their eyes on the consumer market – They also had big plans for expansion and higher speeds for the business market. 

Despite all of this, the second generation of the IEEE standard, 802.11b was heading steadily for its final approval at the end of September. By the end of the year, there were products due to ship from company 3Com (later acquired by HP along with Compaq). Their products were based on the newer, faster standard and set for release before 1999 ended. 

At the time, networking firm 3Com formed WECA (Wireless Ethernet Compatibility Alliance) bringing together 5 strong advocates for IEEE. Their aim was to make sure that any products using the pending second generation standard would all be compatible with each other. 

Originally tipped to be named ‘FlankSpeed’, connectivity as we know it today was trademarked as Wi-Fi. There began the establishment of the rules by which wireless products could be deemed ‘Wi-Fi Certified.’

What if Wi-Fi had not won out against HomeRF?

Wi-Fi won the wireless standard race, but what if HomeRF had in fact taken the lead? There are ways that all might not have worked out as it has. 

If the second generation standard 802.11b had been delayed, then HomeRF may have been able to sneak ahead. It was only due to a compromise between WLAN industry pioneers (and foes) Lucent Technologies and Harris Semiconductor that meant there was no delay. 

What if FlankSpeed was only available at work?

So what if WECA had decided only to focus on business connectivity? That was a discussed possibility. ‘Go anywhere’ connectivity almost wasn’t on the table. And what if ‘FlankSpeed’ had been chosen over ‘Wi-Fi’? 

A big chunk of today’s workforce rely on being able to bring work home with them. And not just home – What about coffee shops, airports, on the daily commute sitting on the train? Nowadays we tend to take work with us wherever we go. 

Had we been using FlankSpeed at the office and HomeRF at home, this would have made things very difficult for anyone working from home. And you can forget about coffee-shop-working and catching up on emails waiting for a plane – It’s possible neither of these public access options would exist. Zones that were not home and the office would have been a no-go (or NoHO) for working online. 

And if you’re wondering about FlankSpeed and Smartphones – That would have been a no as well. The mobile world of online connectivity disappears into the mist, out of grasp. 

Would it have been beneficial to have more than just one wireless standard? 

The benefits of having a singular focus on just the one standard meant that there was more scope for innovation and cost reduction. 

Even if FlankSpeed or HomeRF had gone forth alongside Wi-Fi, it couldn’t have ever become as cheap to run or prevalent and globally penetrating as Wi-Fi. 

Having a universal standard means that retail stores, public spaces and anywhere where we would now expect to be able to connect, could roll it out uninhibited. Had this not been the case, the ability to stream video whilst sipping a coffee or connect to emails whilst sitting on the train may not be available. 

Thinking on a global level, those living in emerging market countries like Nigeria, rely on free Wi-Fi hotspots to be able to connect to the rest of the world. Remote islands like the Bahamas also rely on Wi-Fi to get support following adverse weather conditions like hurricanes. In this way, Wi-Fi provides critical connections all over the world.  

HomeRF folded in 2003 – So how did Wi-Fi succeed so quickly? 

As with all well-laid plans, it’s all in the preparation and timing. With the announcement of the name Wi-Fi and the promise of certified interoperability from WECA, companies investing in this new wireless standard had the assurance that their products would all work together. 

In 2000, 86% of Wi-Fi devices were used for business. Wireless connection in businesses was big business in itself, with chipmakers and PC companies quickly hopping off the fence to support and join Wi-Fi. This led tech giants Microsoft and Intel to jump ship from HomeRF to Wi-Fi. Wireless for business soared in popularity ahead of in the home, which gave Wi-Fi chip volume a boost. This in turn led to closing the cost gap between that and HomeRF, leading it to fold in 2003. 

Since then, over the past 2 decades the Wi-Fi Alliance and IEEE have worked together to represent, guide and oversee Wi-Fi and its subsequent standards. 

The IEEE committee continues to roll-out new standards, and the WI-Fi Alliance makes sure that certified products can communicate with each other. 

So the next time you hit a Wi-Fi deadspot, or find that the Wi-Fi is down in your favourite coffee shop – Stop and breathe. Count your blessings that you can take your work with you wherever you go (mostly) and that you can largely connect via Wi-Fi wherever you need it. 

Is the Google Nest Wi-Fi Pro Any Good? 

Now that the deliveries have started to drop, the reviews are beginning to come in for the Google Nest Wi-Fi Pro – And so far they’re rather mixed opinions. So is it any good or not? 

Dubbed as the router for working-from-home and a valid step up from its predecessor – Is the Google Nest Wi-Fi Pro the right mesh router for you?

If you read our recent blog on this, you’ll already know that this latest Wi-Fi device from Google brings together Wi-Fi 6E, Thread and Matter functionality. (Wondering what Matter is when it comes to Wi-Fi? Read this). The Nest Wi-Fi Pro enables you to control your smart home devices through this mesh router.  

Wasn’t Google Nest already a mesh network? Yes. Back in 2016, Google launched it’s first mesh Wi-Fi system, followed by Nest Wi-Fi in 2019. This device topped many lists looking at the best mesh routers – Will the Google Nest Wi-Fi Pro follow in its footsteps?

They don’t come cheap – This latest addition to Google’s collection of Wi-Fi devices is more expensive than those before it. Which would make sense if it’s offering upgraded functionality. But is it worth the upgrade and the price? Let’s take a look. 

Google Nest Wi-Fi Pro – The Pros 

We’ll start with all the most positive things that make this new Wi-Fi device worthy of consideration for your home network. 

Why Does Wi-Fi 6E Compatibility Make a Difference for the Google Nest Wi-Fi Pro?

Perhaps the biggest upgrade from previous products is adding in Wi-Fi 6E functionality for the Google Nest Wi-Fi Pro. What does this actually mean? Let’s get technical for a second. The previous Nest device was compatible only with Wi-Fi 5, aka 802.11ac. This means that the router could only use the 2.4GHz and 5GHz bands. With added Wi-Fi 6E functionality, the Nest Wi-Fi Pro can use the 6GHz band, giving you access to faster, more reliable internet. 

With the ability to access all 3 radio bands at the same time, the Nest Wi-Fi Pro can provide a combined maximum speed of 5.4 Gbps.

Unsurprisingly the addition of Wi-Fi 6E compatibility means the Nest Wi-Fi Pro will offer faster speeds for other Google products to make the most of – Think the Pixel 6, Pixel 6 Pro and the imminent Pixel 7 and Pixel 7 Pro.  

It’s safe to say that Google are taking this new Wi-Fi standard and running with it, bringing the consumer a faster, more reliable internet connection. 

Google Nest Wi-Fi Pro Offers Sizeable Coverage With Scope to Branch Out

Even the largest of homes can secure a strong Wi-Fi signal with Google Nest Wi-Fi and Nest Wi-Fi Pro. With just the one unit you can gain coverage across 120 metres squared, and with the option to have a total of 5 units that’s 600 metres squared of coverage. This is what helps set Google’s Nest Wi-Fi mesh products apart from the rest. (Google doesn’t recommend exceeding 5 units so as to avoid any Wi-Fi interference). 

So whether you are living in a cosy flat or expansive mansion, the Google Nest Wi-Fi Pro has got you covered. What’s more, if you move into a larger property, it’s easy to add in another unit to scale up the coverage in your new home. 

How Many Connected Devices Can Google Nest Wi-Fi Pro Support?

The number of connected devices supported on the Google Nest WI-Fi Pro has increased to 300 (up from 200 on the previous Nest product). 

Why on earth would you need to support 300 devices on your network? Well that really depends on how large your home is and how many people live there. It’s not just about personal devices like laptops, tablets and smartphones. With the prevalence of the smart home, which this particular product is great for, comes the increase in smart home devices. Think smart light bulbs, smart speakers and any other connected devices you want to control remotely. 

The Google Nest Wi-Fi Pro has the capacity to handle these with ease, whereas a more traditional router might meet its limit rather quickly if you’re building a smart home. Furthermore, this device has the ability to prioritise connected devices so you get the connection where you need it most. With MU-MIMO technology, the Nest Wi-Fi Pro units can also communicate with multiple devices at the same time. 

Google Nest Wi-Fi Pro and Parental Controls

If you have children that use the internet, you’ll know only too well how important it is to have parental control over the Wi-Fi. 

The Google Nest Wi-Fi Pro has parental control software built in for free. This means you can:

  • Put your children on a Wi-Fi schedule e.g. no internet at meal times or after 8pm
  • Use Google SafeSearch technology to block content that is deemed unsafe
  • Edit control settings via the Family W-Fi menu in the app 

The fact that this is built in at no extra charge helps set the Google Nest Wi-Fi Pro apart from its competitors. For example, Orbi mesh routers from Netgear charge a subscription fee in order to set internet time limits and restrictions. 

It’s worth noting that this feature is also available on Google’s previous Nest Wi-Fi product as well. 

Matter and Thread Compatibility on the Google Nest Wi-Fi Pro

Google is really looking ahead with their latest product by including Matter support with this device. Technically it won’t be available from launch, but as we start to see an increase in more Matter-enabled devices creeping into our smart homes, it will make adding new products easier in the future. 

Like Matter, Thread is another network function being spoken about more and more. So it makes sense that the Google Nest Wi-Fi Pro also has a Thread border router built in. We could go into much more detail about Thread but we’ll save that for another time. For now, Thread offers a lower power mesh to your home network, so the ability to connect Thread smart devices in the future will be appealing to many.

Google Nest Wi-Fi Pro: Pros on Price

If you are looking for a simple, stand-alone Wi-Fi 6E router, then a single Nest Wi-Fi Pro unit is probably the cheapest option at a cost of £190. Other competitive alternatives are almost double this price. 

Even if you are looking at getting the pack of three units at £380, then it seems worth the money as you’re getting three units for roughly double the cost of one. That seems like pretty decent value to us. 

Google Nest Wi-Fi Pro – The Cons

So we’ve gone through the reasons why you might want to rush out and upgrade to this latest Wi-Fi product. But what could cause you to pause that thought? Let’s see. 

What’s the Design Like on the Google Nest Wi-FI Pro?

The aim of many modern Wi-Fi products is to make them less ugly. The less you are wanting to hide them away in a cupboard, the better these routers will actually work! But as with all things design wise, this can be hugely subjective. What appeals to the eye of one consumer might cause another one to immediately look away. 

For a mesh network to be effective, the units need to be spread about the home if you want to get the best Wi-Fi coverage. The previous Nest Wi-FI units have a soft, matte finish which some would argue makes it easier to blend in with other decor and not stand out too much. 

The Google Nest Wi-Fi Pro however, has a glossy finish that very much says ‘look at me’ – These are not meant to be hidden away! If you like the look of them and don’t mind making them a feature in your rooms then it’s all good. If you were hoping to let them lurk in a corner out of sight, that might be harder to do with these new units. 

It’s also worth noting that these Google Nest Wi-Fi Pro units don’t come with any mounting hardware, so if you were hoping to mount them to the wall or ceiling that might be rather difficult. On the plus side, they do have a rubber base so they’re unlikely to move around wherever you do place them. 

Does the Google Nest Wi-Fi Pro have Ethernet Ports?

We’ve just talked about the aesthetics of the Nest Wi-Fi Pro, and the lack of Ethernet ports fits into this. The design is minimalistic, hence why there are only two ethernet ports on these units. Of course, you could just add in a switch if you need more, but if you are picking the Nest Wi-Fi Pro based on it’s looks, then adding in a switch and hard wire might detract from the image you are looking for. 

This might not be a problem for many homes – Not many products need to be wired to the router and this device will be much faster than what has come before. However, if you have a security camera for example, you might find that it needs to be hardwired to the router via a hub.

The ports only support gigabit speeds which is a bit of a shame. 2.5GbE is becoming more common in order to offer the best possible speeds between wired and wireless. 

If you really need a router with plenty of Ethernet ports, then the Nest Wi-Fi Pro possibly isn’t the one for you – But worry not, there are other mesh routers available. 

What about Wi-Fi 7?

We know, we know, we’re only just getting to grips with the latest wireless standard Wi-Fi 6E. But Wi-Fi 7 is hot on its heels (as with all new technological developments – There is always something waiting in the wings). 

Wi-Fi 7 is set to arrive at the start of next year, offering consumers even faster internet speeds up to a possible maximum data rate of 5.8 Gbps. That’s more than double what Wi-Fi 6E has to offer! Amazingly, Wi-Fi 7 is set to feel like you’re using an Ethernet connection in terms of speed. That’s pretty impressive.

So whilst the Google Nest Wi-Fi Pro future proofs your network in terms of Matter and Thread, it won’t be compatible with Wi-Fi 7. The next Google development will likely take a few more years, so if you’ve already got a new router or your current Google Nest Wi-Fi is working well for your home then it might be worth waiting for the next Nest Wi-Fi Pro after this one. 

The Google Nest Wi-Fi Pro isn’t Backward Compatible

We all feel a bit more secure in making an upgrade if we know that the new device is backward compatible. We know that our other, older devices are safe and will still be able to function. This was true of the previous upgrade from Google Wi-Fi to Google Nest Wi-Fi. Unfortunately, the latest upgrade to Google Nest Wi-Fi Pro will not be backward compatible, which means that your current/previous units (routers or points for example) won’t be compatible with this new one so you won’t be able to combine the two. 

Whilst this may feel quite frustrating, if you’re considering buying a new mesh router anyway then this could be an ideal opportunity to replace what you’ve got to a completely new network that will offer you faster and more reliable internet as well as future proofing it for imminent Wi-Fi standard updates like Matter and Thread. 

Alternatively, the fact that you can’t link older products with the new might prompt you to buy a new mesh system altogether – Perhaps an Amazon offering to fit with your Alexa! 

Google Nest Wi-Fi Pro – The Verdict?

As we’ve discussed above, there are many pros and cons to consider when thinking about purchasing the latest Google Wi-Fi device. The final verdict really comes down to you and what your network demands are. 

Will this mesh network device work for you and your home? 

Wi-Fi Smart Home Standards: What is Matter?

Last week we blogged about Google launching their Nest Wi-Fi Pro – And we mentioned that this new device would be Matter compatible. 

If you keep up with all the latest gadgets and gizmos and pride yourself on your smart home then you’ll have probably been hearing quite a bit about Matter. Especially from the likes of Google, Amazon and Apple. 

If you’re keen to keep your smart home updated with up to date tech and new features, then you might be eager to upgrade to Matter compatible devices.

But what exactly is Matter when it comes to Wi-Fi? And do you need to be rushing out to buy the latest smart home tech to future-proof your devices?

What is Matter in Wi-Fi?

Essentially, the aim of Matter is to provide a protocol that offers interoperability across different ecosystems, offering standard data models for smart home devices. 

If you’re reading this, then it’s likely you have a smart home or are intending to ‘smarten up’ your home with some of the latest gadgets. Think smart bulbs for your lighting, heating controls, TV, music, etc. You’ll also likely have a Google Home, Amazon Alexa, or Apple HomeKit – Which means when you buy smart home devices, you’re checking if they’re specifically compatible to your smart assistant. Is this smart bulb compatible with Alexa? 

In essence, this newly-launched networking protocol – Matter – will ensure that all your smart home accessories work across all the smart home platforms. Or major ones at least. Instead of having to check if something is compatible with Google Home, all you’ll need to do is check for the Matter label. 

You do need to bear in mind however that depending on the platform of your choice, you may need to wait for software updates to enable Matter. 

But what actually is it? What is Matter? Matter is an IP based technology, formerly known as Project Chip (Project Connected Home Over IP). Using Matter, it’s possible to create a mesh network which doesn’t need to connect to the cloud. This means that whether or not your smart accessories connect to the internet or have a hub, if you are physically there in the home then you should be able to ‘turn the lights on’ with Matter and it work with as little as your phone. 

Where we have connective technologies such as Ethernet, Wi-Fi and Bluetooth, Matter operates as an application layer on top. This makes mesh functions possible. 

Is Matter a big deal for Wi-Fi and smart homes?

As we intimated above, when you’re shopping for a smart home device or accessory it can all seem a little bit fractured. Does Alexa support this device? Is this accessory compatible with Google Home? 

Whilst many devices and accessories cross over and work with various platforms, that isn’t always the case and we definitely need to be checking compatibility before making a purchase. 

When you’re shopping for a smart home platform, device or accessory, the ones you want might not all marry up. You might love the features of one platform, but not be as impressed by the accessories on offer and the specs of compatible devices available. And that can feel pretty frustrating. 

This is where Matter will be really handy for the smart home industry as a whole – For you as a consumer as well as the smart home manufacturer. 

Matter will mean that you will have a wider range of product options, as well as more reliable connectivity within your home. And that’s a huge thing. 

If you have a smart home, you will likely have smart devices and accessories located all over the house in different rooms – Maybe even outside! If these locations don’t have a strong, reliable signal then you’ll find your devices ‘dropping out’. If you have a home jam-packed full of smart devices then you could even find that your router is overloaded and the Wi-Fi doesn’t work as effectively. Although this is unlikely with Wi-Fi 6, you don’t want a smart home full of devices that can’t work effectively due to the Wi-Fi. 

But accessories using Matter, particularly on a Thread network, helps reduce these connectivity problems. 

Which manufacturers will be compatible with Matter in the UK?

The body behind the Matter standard is the CSA (Connectivity Standards Alliance). Amongst the members of this alliance, you will find the big players of the smart home world like Google, Amazon, Apple and Samsung. 

Google seems to be leading the way when it comes to Matter compatibility here in the UK. As we mentioned in last week’s blog, Google is already launching their Matter compatible device through the Nest Wi-Fi Pro. 

We fully expect others to fully suit very soon, with the tech world eagerly awaiting the necessary software updates by the end of this year. 

Next year we will start to see the tech world pick up the pace with device development to match the Matter spec, with the launching of more and more Matter compatible accessories. 

If you can’t envisage your home without it’s smart element and worry about Wi-Fi coverage disrupting your smart home functionality, then Matter could give you the peace of mind you’re looking for to keep those concerns of operating things without internet at bay. 

Whilst Matter compatibility would future-proof your devices, if you’re happy to choose current devices and accessories that are compatible only with your chosen platform then they will continue to work just the same even once Matter is available. 

We’re excited to see what Matter will have to offer the smart home industry!

What’s the Difference Between Wi-Fi 6 vs Wi-Fi 6E?

Put very simply, Wi-Fi 6E is an extension of the Wi-Fi 6 standard. It basically acts as a fast lane for compatible devices applications and devices which leads to faster wireless speeds and lower latency. 

But there’s more to it than that!  

One main thing to note is that Wi-Fi 6 is backward compatible (meaning it works with previous Wi-Fi standards) whereas Wi-Fi 6E does not offer this. But this is part of the reason how it creates that fast lane. 

Because Wi-Fi 6E is only compatible with Wi-Fi 6E devices, there tends to be lower levels of congestion and interference within the 6 GHz band, hence helping to optimise performance. Wi-Fi 6E devices are becoming more prevalent. 

When did we start using the 6 GHz frequency band? 

Back in July 2020, Ofcom, the UK telecoms regulator, made access to 500MHz of radio spectrum frequency in the new 6GHz band available for home Wi-Fi networks.

This significantly boosted the speed of any indoor home wireless networks exempt from licences via the new Wi-Fi 6 / 6E standard. 

The 6GHz band is a higher frequency than the others, which means it has a lower level of coverage than the 5GHz band due to weaker signal. However, the extra spectrum allows more space for data which means faster speeds. 

The lower coverage means a more secure connection for homes due to less congestion and competition with other local Wi-Fi signals. 

Do we need new infrastructure for Wi-Fi 6E?

As we mentioned above, Wi-Fi 6E is not backward compatible like Wi-Fi 6, so this means that if you want to utilise this Wi-Fi fast lane, you need the relevant devices. So this means that yes, you will need new Wi-Fi infrastructure to use Wi-Fi 6E. 

To support this Wi-Fi standard extension, you’ll need your IT team to look at your current wireless infrastructure and identify what will need to be updated. Think routers, switches, access points and other hardware – Then you can take full advantage of the higher speeds of Wi-Fi 6E. 

It’s worth noting that when you do upgrade your infrastructure in order to support Wi-Fi 6E, you don’t necessarily need to abandon your existing Wi-Fi 6 devices and applications. You can still use these on the 2.4Ghz and 5GHz frequency bands. 

The upgraded devices that can use the 6GHz spectrum will likely help to reduce congestion on these other frequency bands – Providing a better user experience for devices connecting to both 2.5 GHz and 5GHz as well as the Wi-Fi 6E devices on the 6GHz band. 

What are the biggest benefits of Wi-Fi 6E? 

Strong, reliable Wi-Fi has become business critical. Businesses cannot function without a good Wi-Fi network – A network that needs to adequately serve an entire workforce. 

In today’s day and age, this means a workforce with some employees in the office, some working remotely and a mix of both. This hybrid workforce will have a variety of devices and apps that support this way of working. Relying on excellent Wi-Fi!

It’s a data driven world, so your business needs to make sure that the wireless network is secure, reliable, flexible and as fast as possible. Here are the benefits of Wi-Fi 6E that will most help with these business critical Wi-Fi elements. 

Wi-Fi 6E and Speed

The 6GHz band allows data to be transmitted rapidly via Wi-Fi 6E devices like smartphones, laptops and wearable devices. THe other great thing is that because it’s not backward compatible, there are none of those slow legacy devices trying to compete for bandwidth. 

These advantages with speed mean that streaming high resolution video, teleconferencing and even online gaming make Wi-Fi 6E an ideal choice. It’s perfect for these types of bandwidth-intensive applications. Real world examples are AR/VR and transferring large data files such as MRI images within healthcare. 

Wi-Fi 6E and Security

Most businesses and organisations require a secure network. It is mandatory for all Wi-Fi 6E devices to have WPA3 (Wi-Fi Protected Access 3) as specified by the Wi-Fi Alliance. THey ust also not have backward compatibility with WPA2. This increase in security helps to increase the confidence of your network users when moving to the 6GHz frequency band – Especially for those must-trusted connections, 

OWE (Opportunisitc Wireless Encryption Specification)  is also an option for Wi-Fi 6E. Using OWE means that the communication between a pair of endpoints is protected. The Support for Wi-Fi Enhanced Open certification is given for the 6GHz band, based on the OWE. 

What Industries Can Benefit Most from Wi-Fi 6E? 

Wi-Fi 6E really has the ability to transform any and most industries. The ones that are likely to benefit the most with the most transformative impact include the following sectors:

How Can Wi-Fi 6E Benefit the Healthcare Industry? 

We touched on how Wi-Fi 6E could support the transfer of large data files like MRI images. It also helps providers to connect more life-saving devices with fewer data delays and slowdowns. The higher speeds and lack of congestion means higher quality connections with fewer dropouts, making it impactful for telehealth appointments. 

How Can Wi-Fi 6E Benefit the Retail Industry? 

No one likes to be stuck at the point of sale waiting for the card machine to connect and take the payment. Wi-Fi 6E can help to ensure these connections are faster – Not only reducing customer frustration, but also shortening queues. The better the experience for the customer, the better the image of the brand, leading to regular custom and increased sales. 

How Can Wi-Fi 6E Benefit the Education Industry?

Over the last couple of years, we’ve seen how much educational institutions have relied on technology to continue and enhance teaching. Primary Schools up to Universities have immersed themselves in virtual learning which has been carried on even when students have been welcomed back to classrooms. Wi-Fi 6E supports high throughput and concurrent data transmission which makes it ideal for a learning environment. 

Let’s not forget that more and more students are using devices and tech as a part of their daily school lessons. Newer devices that can take advantage of the 6GHz band and Wi-Fi 6E benefits, whilst older devices can still access the 2.4 GHz and 5GHz bands. This results in lighter traffic all round, enhancing wireless connectivity and performance and thus the learning experience. 

How Can Wi-Fi 6E Benefit the Manufacturing and Warehouse Industry?

IoT devices and sensors are becoming more and more prevalent in the manufacturing and warehouse industries. An organisation in this sector should seriously consider using Wi-Fi 6E enabled devices so they can take full advantage of this almost interference-free band. 

The brilliant thing about this is that you can split your network into two. Employees working in the office checking emails and using the internet for day to day admin can continue to use the 5GHz and 2.4 GHz bands. This leaves the Wi-Fi 6E devices on your manufacturing floor or warehouse free to run efficiently uninterrupted. 

This makes Wi-Fi 6E ideal for this industry, helping to meet service level expectations with improved reliability and lower latency.

Wi-Fi 6E Benefits for All

These industries are only a few select ones that are likely to see a huge positive impact from using Wi-Fi 6E. But most businesses and organisations could see improvements in their network by upgrading to this Wi-Fi standard extension. 

In conclusion, various industries and businesses in general can benefit from Wi-Fi 6E with the main advantages being:

  • Higher network speeds
  • Stronger security
  • Access to up to 2.5 times more spectrum 
  • A better voice and video experience 

Are you considering updating your wireless infrastructure to support Wi-Fi 6E? Why not give the experts a call! Here at Geekabit our Wi-Fi engineers can help support you and your business Wi-Fi network with professional and expert advice and installation. 

Will Wi-Fi 7 Replace Wired Ethernet?

We all want the best connection possible – Whether that’s wireless or wired. Here at Geekabit, we love all things Wi-Fi, but even we will admit when a wired Ethernet connection could bring more stability and reliability. 

The Wi-Fi cimmunity is all a-buzz with talk about Wi-Fi 7 and the latest improvements it will bring to the wireless world. But will it replace internet via wired Ethernet cables? Theoretically, Wi-Fi 7 should have a top speed that would make it a worthy opponent of LAN’s. But that wouldn’t be the case in all situations. 

Let’s take a closer look. 

What is Wi-Fi 7?

This next generation of wireless technology is well on the way. And with the promise of even higher data rates and lower latency than the current Wi-Fi 6 offering!

Wi-Fi 7 (or 802.11be to be technically correct), in comparison to Wi-Fi 6, will:

  • Use multi-band/ multi-channel aggregation and operation 
  • Deliver higher spectrum and power efficiency
  • Have better interference mitigations
  • Offer higher capacity density 
  • Have higher cost efficiency. 

As a result of the projected ability for it to support up to 30Gbps throughput, this seventh generation of Wi-Fi is also being referred to as Wi-Fi Extremely High Throughput. It will be approximately 3 times faster than Wi-Fi 6.  

How does Wi-Fi 7 work?

The Wi-Fi engineers over at IEEE are proving that there are still ways to enhance and improve Wi-Fi – Even since Wi-Fi 6. As we’ve set out above, Wi-Fi 7 will not only give another boost to Wi-Fi connectivity, but also significant improvements in performance whilst further reducing latency. 

But how? 

Wi-Fi 7 doubles the channel size

With Wi-Fi 7, we see the maximum channel size double, going from 160MHz to 320Mhz. This also means that the throughput is automatically doubled as well.  Not only that, but it’s more flexible too, enabling networks to run with either one channel (at 320Mhz) or two channels (each at 160Mhz). Therefore you can match the network to the requirements of your applications.  

Wi-Fi 7 doubles the number of MU-MIMO spatial streams

The throughout is also doubled via the available MU-MIMO spatial streams which increases from 8 to 16, again doubling what’s available. The connection is shared equally, dividing the bandwidth into separate streams using Multiple-user, multiple-input multiple output (MU-MIMO) technology.  

We tend to see quite a bit of congestion from multiple endpoints attempting to access the wireless network at the same time – But MU-MIMO helps to reduce this congestion. Not only that, but it supports bi-directional functionality. This means that the router and both accet and send data at the same time. Something that was limited to just downlink transmission with Wi-Fi 5! 

Wi-Fi 7 quadruples the QAM

Quadratic Amplitude Modulation (QAM) is increased with Wi-Fi 7 from 1024 to 4096. It is expected that this increase will enable the delivery of an additional 20% in throughput. It’s this that takes us from Wi-Fi 6’s 9.6Mbps to Wi-Fi 7’s 46Mbps. 

Wi-Fi 7 offers Multi-link operation (MLO)

The great thing about MLO is that devices can transmit and receive across all of the available frequency bands (2.4Ghz, 5Ghz and 6Ghz), simultaneously. What does this mean? 

  • It improves performance
  • It reduces latency
  • It boosts reliability
  • In IoT or IIoT environments, specific channels can have pre-assigned data flows based on the requirements of the application or device
  • Networks can be dynamically configured so that they can select the frequency band that has the lowest congestion in real time, sending data over that preferred channel

Wi-Fi 7 offers Multi-AP operation

The functionality available in current and previous Wi-Fi standards meant that each access point acted independently when accepting connection requests from endpoints and moving traffic back and forth to that endpoint. The Multi-AP operation with Wi-Fi 7 uses mesh technology to configure neighbouring AP’s so that they can coordinate with each, thus improving the utilisation of the spectrum and resources. Network engineers can use Multi-AP operation to program a set of APs to form a subsystem and accurately coordinate channel access and transmission schedules.

Time-sensitive networking (TSN) with Wi-Fi 7 

What is TSN? Time-sensitive networking is an IEEE standard to help increase reliability and lower latency. Wi-Fi 7 supports this TSN. It was originally designed to help reduce buffering and latency in Ethernet networks by using time scheduling. This ensures the reliable delivery of packets in real-time applications. 

Multi-RU and WI-Fi 7

Using OFDMA (orthogonal frequency division multiple access), Resource Units are assigned to individual clients to enable access points to communicate simultaneously with multiple clients.  Multi Resouce Units increase the spectrum efficiency, ensuring that traffic avoids any interference on congested channels.

Wi-Fi 7 and deterministic low latency 

Wi-Fi 7 will be able to support real-time applications like AR, VR and IoT due to the combination of the above technologies decreasing latency. In certain situations, for example some industrial automation applications, it’s important that there is not a wide variance in latency. Deterministic low latency with Wi-Fi 7 will be great for this – It means that it will not spike beyond a certain limit. 

What are the benefits of Wi-Fi 7?

You might be thinking that the current Wi-Fi standard is good enough for you and your business connection needs. But the thing is, the wireless traffic load is only going to grow year on year and over time, organisations are going to have no choice but to embrace (and need) digital transformation. So whilst what you have now may well be sufficient, it might not be the case in forever. 

We are all well aware that the business operations that were once done manually are now being done digitally. This also means that the amount of data we use and need to move is growing all the time. 

Digital transformation means that not only has paper turned digital, but processes that were once quite simple are now much more complex, interconnected with others and across multiple applications. 

The improvements and enhancements we will see with Wi-Fi 7 have been designed to accommodate the increased traffic and data we are seeing from digital transformation. 

So – Will Wi-Fi 7 replace Ethernet?

Perhaps the biggest gane changer when it comes to Wi-Fi 7 is that it could in fact replace wired Ethernet in certain circumstances. We’re thinking in offices where everything is all completely wireless, everything unplugged, IT staff could use Wi-Fi 7 instead of having ti run wires and cables through ceilings, walls and office space.  Pretty handy! 

We also talked about the speed of Wi-Fi 7 earlier. Theoretically the maximum speed is 46Gbps. Even in real-world estimates where we’re talking much lower speeds of 6Gbps, Wi-Fi 7 is still faster than Gigabit Ethernet. 

When it comes to comparing Wi-Fi 7 and Ethernet, it’s worth considering bandwidth and endpoints. Wirelessly, the bandwidth is shared among endpoints. With Gigabit Ethernet, each endpoint has dedicated delivery of gigabit circuits. 

Whilst this may sway you back towards Ethernet, don’t forget that wireless networks, particularly ones using Wi-Fi 7, can use multiple antennas and streams. With the meshing of AP’s  with Wi-Fi 7, it might be wise to test the real-world performance to analyse what is necessary for your environment. It can get quite complex, but is definitely necessary when designing and deploying a new network or updating your current malfunctioning one. 

There are tech experts that are expecting Wi-Fi 7 to be a strong contender to replace Ethernet connections for super-high-bandwidth applications. It’s expected that the advances we’ll be seeing with Wi-Fi 7 will make it a very attractive option for a broad range of devices, applications and industries. 

Here at Geekabit, our Wi-Fi experts think it’s a bit early to predict whether or not Wi-Fi 7 will replace Ethernet on a large scale for enterprise LAN connectivity. On paper there may be a chance, but the low-maintenance predictability of Ethernet may make IT teams hold off replacing it for Wi-Fi 7. 

Many IT departments already enjoy the best of both worlds, utilising a pre-existing Ethernet LAN with a wireless network added on top. We don’t see why Wi-Fi 7 and Ethernet can’t co-exist, with Wi-Fi 7 being the primary network and good old, trusty Ethernet in the background quietly waiting as a backup. 

Get in touch with our Wi-Fi Experts

If you are wondering whether you should repace your Ethernet cables with Wi-Fi, or the other way around, then do get in touch with our Wi-Fi experts here at Geekabit. We can help advise what would work best for you and get a network designed and installed for your individual needs. Let’s solve your Wi-Fi woes and get reliable internet into your home office! You can get in touch on 0203 322 2443 (London), 01962 657 390 (Hampshire) or 02920 676712 (Cardiff).

What is 6GHz Wi-Fi?

Did you know that following the historic decision by USA’s FCC in April 2020 to release 1200 MHz of bandwidth in 6 GHz space for unlicensed use, UK regulators cleared unlicensed wireless usage in the 6 GHz spectrum to give 6GHz WiFi a huge boost back in July 2020. 

 

This regulatory go-ahead enables your router to broadcast over the 2.4GHz and 5GHz bands. What does this mean in real life terms? Simply, it means there are now a lot more open airwaves that routers can use to broadcast Wi-Fi signals. This in turn means faster, more reliable connections from the next generation of devices.

 

This is the biggest spectrum addition in over 30 years – In fact, since the FCC cleared the way for Wi-Fi back in 1989. Pretty huge right? It means the space available for routers and other devices have quadruple the amount in this new spectrum. This means a lot more bandwidth for the user and less interference for their devices. 

 

For the past 20 years we’ve had the Wi-Fi Alliance that oversees the implementation of Wi-Fi. This change in the spectrum is the most ‘monumental decision’ during their existence. You’ll be seeing this implementation as Wi-Fi 6E, with more and more enabled devices becoming available. 

 

Will Wi-Fi 6E fix my bad Wi-Fi? 

 

There’s a good chance that spectrum congestion has interfered with your ability to connect to your Wi-Fi network in the past. When there are a lot of devices all trying to connect over the same band of frequencies, some devices will drop out. Have a look at your local area for Wi-Fi networks – If there is a long list, that could be why you’re struggling with a slow connection and less than favourable reliability. This is because there are too many competing signals, which stops your device getting through. It’s hoped that gains in 6GHz performance will last, even when they are more widely used than they are now. 

 

Not only does Wi-Fi 6E offer new airwaves for routers to use, they are also more spacious airwaves that have less overlapping signals which can cause problems on some other Wi-Fi channels. 

 

The new spectrum doesn’t use any of the previous spectrum, yet offers space for up to 7 maximum-capacity Wi-Fi streams which can all be broadcast simultaneously without causing interference with each other. 

 

Here’s the geeky bit… The UK telecoms regulator, Ofcom, made it possible for home Wi-Fi networks to harness 500MHz of radio spectrum frequency in the new 6GHz band, which will significantly boost the speed of licence-exempt indoor home wireless networks via Wi-Fi 6/6E. 

 

What is 6GHz? 

 

Basically, Wi-Fi works by broadcasting over airwaves that are open for anyone to use. Previously, this was over two bands: 2.4GHz and 5GHz. This third band, 6GHz, is quadrupling the available space for traditional Wi-Fi. 

 

What do the numbers mean? 2.4GHz can travel further, but 6GHz travels faster. The main thing however is that the number of airwaves available on the6GHz band is quadruple what has been available before. Exciting stuff! 

 

On a personal ‘how will this affect me’ level, it means that if you live in a block of flats, and you are the first person to get a 6GHz router, then you won’t be competing with anyone for a connection. The great thing is that even as 6GHz routers become more popular, it’s likely that signals will stay faster and stronger than previously as it’s a more spacious spectrum.  

 

Will Wi-Fi 6E be faster?

 

It’s not quite as straight forward as that, but Wi-Fi 6E will sort of be faster. Theoretically, 6GHz Wi-Fi has the same top speed as 5GHz Wi-Fi. The maximum Wi-Fi 6 standard speed is 9.6 Gbps. Now, you’re not going to actuall get that speed in real life, however having access to the new airwaves could well increase your speed. 

 

The available spectrum at 5GHz means that Wi-Fi signals aren’t as large as they could be. Whereas, it’s thought that routers at 6GHz will broadcast at the current maximum allowable channel size. That in itself, means a faster connection. 

 

These new networks could see smartphone Wi-Fi connections hit 1–2 Gbps. You might be wondering how this compares to 5G – Indeed, these are the speeds expected from millimetre-wave 5G. However, that has very limited availability. 

 

Remember that your internet speeds will also always depend on / be limited by your provider. But it could still be a huge jump for connectivity.  

 

Can I buy Wi-Fi 6 devices?

 

Here in the UK we started to see Wi-Fi 6 devices creep onto the market in the last year or so, once the Wi-Fi Alliance started offering certification for Wi-Fi 6E. Deployment has been slow and steady, with more Wi-Fi 6 enables devices appearing bit by bit. We’re on course for the next generation of Wi-Fi networks.

 

Wi-Fi 6E enabled devices are most seen in smartphones and then tablets, with TV’s likely to follow suit. We use our phones for almost everything, so it’s no surprise that it’s this device that will be top of the list for Wi-Fi 6E. 

 

How do I know if a device supports Wi-Fi 6E?

 

The most widely used Wi-Fi standard on current devices is probably still Wi-Fi 6, the standard previous to Wi-Fi 6E, which you could still see on the box of a new device. This isn’t such a bad thing – It means that the device supports that Wi-Fi standard and offers efficient Wi-Fi performance. 

 

What you should probably start looking out for when buying a new device is Wi-Fi 6E – It’s this one that is extended into the 6GHz band. All devices, like smartphones, tablets, laptops and routers should have backward compatibility – Meaning they will work with any previous Wi-Fi standard to the one that’s stated on the box. This means that you can enjoy available connections even when Wi-Fi 6E isn’t available. 

 

Be aware that even if you buy a Wi-Fi 6E compatible device, you will enjoy the benefits of that when you use it with a Wi-Fi 6E router. 

 

6GHz will become an integral part of Wi-Fi 6 and future generations of Wi-Fi. This means that at some point, you will have to replace your devices with ones that are Wi-Fi 6E compatible to be able to enjoy all the benefits the extra spectrum has to offer. 

 

Due to the Wi-Fi Alliance certification programme, only efficient Wi-Fi 6 devices will be certificated. 

 

It’s worth bearing in mind that the 6GHz spectrum does have some existing licensed users. This means that particularly in outdoor spaces,  Wi-Fi will have to work around them. Outside, routers will need to use something called an “automated frequency control” system. This ensure that they don’t interfere with these existing 6GHz users. Because that means less space to broadcast, there could be degradation of overall performance in some areas.

 

Does Wi-Fi 6E have anything to do with 5G? 

 

We touched on this earlier, but no, they don’t have anything to do with each other really. It just happens that both of these networks are being spoken about a lot, simultaneously. 5G is everywhere, is it not!

 

We keep saying about Wi-Fi 6E being a new spectrum, but really it’s not new, it’s always been there, it’s just been unlicensed. Now, people can use the 6GHz spectrum without a license in their homes. 

 

This also means that other technologies could try to make use of the 6GHz band, which could in turn take up some of the space that Wi-Fi wants to use. 5G is one of the technologies that could be a rival for the space on the 6GHz band. 

 

There is a possibility that 5G could overlap on the new Wi-Fi 6E spectrum through mobile network carriers. This could in turn lead to interference issues, but it’s a bit early to say. If you’re wondering whether 5G will become dominant and replace Wi-Fi altogether, then we think probably not. There doesn’t need to be a winner or a loser when it comes to Wi-Fi 6E vs 5G – They dont necessarily have to be in competition with one another. The spacious nature of this spectrum means there should be enough room for both. 

 

6GHz Wi-Fi is certainly being revered by the tech industry, so we’re pretty hopeful that Wi-Fi will be the main beneficiary of the newly opened 6GHz spectrum.