International Broadband Scorecard Comparison Scrapped by Ofcom UK

Do you wonder how the UK fares against other European countries in regards to broadband and mobile connectivity? Well, you might have to wonder a bit more. 

Ofcom, the telecoms regulator, carries out various reports on performance, looking at things like UK broadband and mobile connectivity compared with other major EU economies like France, Germany, Spain, Italy etc. 

However, it seems that Ofcom have covertly scrapped their annual international comparison despite having been publishing it since back in 2013 when they began the International Broadband Scorecard. 

The report examined various connectivity benchmarks within fixed and mobile broadband performances across different countries, such as:

  • Network availability
  • Take-up
  • Use 
  • Prices  

This then enabled them to measure and compare them with the relative performance of the UK. 

Where did the data come from?

Ofcom normally relied on Omdia-Informa Tech, a third party provider, to supply the data for the non-UK countries included in the report. 

However, as this data is available from Omdia-Informa Tech (as well as other similar telecoms research companies) to anyone who is prepared to pay a fee, Ofcom decided that them stopping their publication of the data would not hinder stakeholders and the like from being able to benchmark the UK broadband offering against the international market themselves.

Scrapping of International Broadband Scorecard a Cost-Cutting Measure?

It would seem to us that this move to scrap the report is likely a cost-cutting measure. This is unfortunate as the reporting was a useful point of comparison to see how the UK was doing in regards to broadband and mobile connectivity on an annual basis when compared without our European counterparts. 

Despite the fact that Ofcom rarely promotes their reports which meant the information they provided was often missed, they have provided some handy and relevant information in past years. 

Can I get the Broadband and Mobile Connectivity Data Somewhere Else?

Thankfully, yes! There is an annual report published from the European Commission that goes some way to compare the UK with EU countries on Broadband and Mobile connectivity (you can find the latest one here). 

If you want to check out the latest summary from the final Scorecard from Ofcom for 2023 (with data from the latter part of 2022) the interactive report is online here

Top UK Mobile Networks for H2 2023 Revealed by RootMetrics Benchmark

How did UK mobile networks perform in the second half of 2023 when it comes to 4G, 5G and mobile broadband?

RootMetrics (now an Ookla company), a mobile analyst firm, has not long published their latest benchmark study of UK mobile networks (4G and 5G) and mobile broadband performance for H2 2023. 

RootMetrics offers scientifically collected and crowdsourced mobile network performance information to consumers and the industry. The firm captures user information by testing network performance when consumers are using their mobile phone for voice or data communications. 

Results of the latest biannual benchmarking report which once again see EE (BT) come out on top against their UK network rivals at Vodafone, Three UK and O2 (VMO2). 

Which UK mobile network is the best for 4G/5G?

When it comes to 5G performance, the picture painted by this recent report isn’t so clear-cut.

This latest study used data from a 5G-enabled, latest model of Samsung smartphone (the actual model was not disclosed in the report). It was purchased from operator stores and tested for both 4G and 5G performance across all 4 primary UK operators within 16 of the most populated UK cities. 

In summary, the study consisted of:

  • 1 latest model Samsung smartphone
  • 4 primary UK mobile operators
  • 16 UK cities
  • 634,942 tests across hundreds of locations
  • 788 locations were indoor
  • 24,179 miles driven during both the day and night

Results were divided into the following categories:

  • Network reliability
  • Speed
  • Data
  • Call and text quality

Scores were given out of 100 (100 being the highest score). As you can see from the data representation from RootMetrics below, EE came out on top across all categories, while VMO2 were found at the bottom of most. 

Interestingly, every one of the 4 primary UK operators saw a decrease in their overall scores when compared to the last RootMetrics report 6 months prior. 

The Overall Scores for H2 2023 (vs H1 2023), in order of best to worst, are:

1. EE – 94.2 (down from 95.9)
2. Vodafone – 90.1 (down from 92)
3. Three UK – 89.3 (down from 90.2)
4. O2 – 86.4 (down from 86.7)

So which is the best UK mobile network? When we look at the average (median) UK download speeds for both 4G and 5G networks, then the strongest data speeds were delivered by EE (68.6Mbps, which was up from 65.1Mbps in the last report).

Vodafone also saw an increase in data speeds, increasing to 34.5Mbps (from 29.4Mbps). Despite O2 improving their data speed score from 15.5Mbps to 19.9Mbps, they still scored the bottom of the 4 providers. Just behind Vodafone to take 3rd place, Three UK fell slightly to 32.3Mbps (down from 34.7Mbps). 

How is 5G performing on UK networks so far?

However, when we look purely at 5G networks, we see a bit of a different picture emerge when compared to the previous report for the first half of 2023. 

Whereas H1 2023 saw Three UK as the fastest median 5G download performance, that award now goes to EE. O2 were unfortunately at the bottom with a score well below the other 3 primary UK networks. The scores for median download speeds for 5G from the H2 2023 report were:

  1. EE – 174.1 Mbps
  2. Three – 165.7 Mbps
  3. Vodafone – 158.3 Mbps
  4. O2 – 68.7 Mbps

What is the availability of 5G on UK mobile network providers? 

As well as 5G speeds, the availability of 5G across UK networks was also tested. 

All 4 of the UK mobile network providers had 5G availability of over 52% during this latest UK wide testing. 

The UK providers in order of 5G availability are:

  1. Three – 57.6%
  2. O2 – 54.5%
  3. EE – 52.3%
  4. Vodafone – 41.9%

You can find more data below for particular regions as well as the most improved cities. 

What can we take away from this report on 5G speed and availability on UK mobile network operators?

So it would seem that even though EE has the fastest 5G speeds, that 5G connection is less available than that of its competitors Three and O2. 

Despite coming second place in terms of speed, Three weren’t too far behind EE and are also slightly more available. 

O2 might have decent 5G availability, but the speed of that connection is pretty dire according to this latest report. 

In terms of 5G speed, Vodafone aren’t too far behind rivals EE and Three, however they are at the bottom of the pile with the lowest 5G availability. 

What more would we like to know about 4G/5G connections across the UK mobile networks? 

If you’d like to read more on this and see further data, head to the full report from RootMetrics UK Mobile Performance Review 2H 2023 here

Whilst this review does shine a light on 5G speeds across the UK and how UK mobile networks are performing, it does only give select information. 

It would be interesting to also see how the networks perform when it comes to upload speeds and latency using 4G/5G connections. 

As you can see from the review, there seems to be a strong focus on urban areas across the bigger cities in the UK. Here at Geekabit we talk a lot about the struggles of rural businesses and more remote locations that still need strong 4G/5G mobile broadband connections. Some more data on the performance of UK mobile networks in these areas would be beneficial and would give a clearer picture of 4G/5G availability and speed across the UK as a whole. 

UK 4G and 5G Boosted With New Small Cells Deployed by EE

Last week we blogged about the shutdown of 3G in the UK and the myths surrounding this phasing out of lower generation tech. If you’ve been concerned about the 4G coverage in your area, then this article might help to put your mind at rest a little bit. 

Last week, EE announced that they had deployed 411 small cells around the UK. This is in addition to the 200 already deployed last year. 

Small Cells to Boost Urban 4G Network

These small cells are different to masts, and are basically tiny base stations installed on buildings and street furniture.

The idea is that it will boost their 4G speed and coverage across their mobile broadband network. 

They’ve claimed that these small cells will allow customers to access download speeds of up to 300Mbps. As always however, this figure should be taken with a pinch of salt. Download speeds are always subject to variability in many areas including:

  • Mobile environment
  • End-user devices 
  • Consumer demand 

The new 4G small cells are carrying a huge 20TB (TeraBytes) of data traffic every day. 

Whilst masts and larger base stations can transmit over large distances, these newly deployed small cells are designed to transmit over shorter distances and more limited coverage. 

They are used for urban areas where mobile network access is likely to be busy – Like shopping centres, airports and ports. 

Can Rural Networks Benefit from Small Cell Deployment? 

Whilst these small cells are really useful for urban areas, they can also be really valuable for boosting network coverage in rural areas too. 

Used in a similar way as in urban areas, the small cells would be deployed on things like lampposts, street kiosks and CCTV columns. 

Working in just the same way as urban areas, these small cells in rural locations would also help boost 4G coverage. 

How Have EE Chosen Where to Deploy 4G Small Cells?

In order for EE to identify the best locations to deploy their small cells, they use network analytics. 

The small cells are built by Nokia and access both licensed and unlicensed spectrum bands. They harness 1800MHz and 2600MHz on the 2.6GHz band (licensed) as well as the unlicensed 5GHz spectrum bands. 

Where Have EE Deployed New 4G Small Cells?

The deployment of 411 new 4G small cells has been rolled out to various locations across the UK. These include:

  • Birmingham
  • Brighton 
  • Sheffield
  • Swansea
  • Leicester
  • Coventry
  • Wolverhampton
  • Southampton 
  • York. 

There will also be ‘seasonal hotspots’ to handle extra network traffic in popular UK holiday destinations. These include:

  • Newquay
  • Paignton
  • Salcombe
  • Southend-on-Sea 
  • Clacton-on-Sea

What Does EE Say About This New Deployment of 4G Small Cells?

James Hope, EE’s Director of Mobile Radio Access Networks, said:

“As demand for data continues to rise, small cells are becoming an increasingly integral part of our mobile network. Our partnership with Nokia ensures customers continue to benefit from our fastest 4G speeds even at the busiest times and in the most congested of locations, and we’re proud to pass another milestone in this project as we continue to invest in improving the UK’s best mobile network* up and down the country.”

What Does the Future Hold?

Good news! It seems like this latest deployment is only the beginning. According to EE, the plan is to deploy a hundred more small cells over the coming months. 

These will be deployed both in cities with existing small cell infrastructure as well adding new towns and cities to the growing list. 

Will Small Cells Be Used to Boost 5G Coverage?

EE also said that they would be doing a trial where small cells would be used to accommodate the 5G network. 

Thankfully, Nokia’s AirScale portfolio can upgrade to 5G in a smooth and consistent manner. 

Could 4G Mobile Broadband Work For Your Home or Business?

If your home or business premises struggles with more traditional forms of broadband and you’ve been considering 4G mobile broadband as your primary network then get in touch with our Wi-Fi experts today.

We are installers of permanent and temporary 4G Broadband throughout the county, for offices, homes, construction sites and events.

You can call our team on 01962 659 390 during office hours or email info@geekabit.co.uk.

We look forward to speeding up your internet using 4G Broadband!

London Underground: 5G Deployed by Virgin Media O2 UK 

Last month, VMO2 became the last of the four primary mobile providers to begin their deployment of their ultrafast 5G mobile broadband service on the London Underground. 

Their 5G mobile broadband has been deployed on the:

  • Central Line – Between Queensway and Holland Park
  • Northern Line – Between Kentish Town and Archway 

5G Mobile Broadband on the Central Line

If you are a commuter on the Central Line, the Underground tunnels between Queensway and Holland Park now have 4G and 5G services following the new roll out. 

You should experience seamless connectivity when travelling through these stations. 

Nestled between Queensway and Holland Park is Notting Hill Gate Station, which has now been upgraded to be a fully 5G station. This means that Central Line platforms and ticket halls at this station will now have this latest mobile network available. 

The stations at Queensway and Holland Park have now had 4G introduced. 

With thanks to https://www.london-tube-map.info/central-line/ for the image

5G Mobile Broadband on the Northern Line

As a commuter on the Northern Line, you should now be able to connect to 5G from Archway to Tufnell Park stations. 

Kentish Town station will also now have 4G connectivity. 

With thanks to https://www.london-tube-map.info/northern-line/ for the image

Shared Platform from Boldyn Networks 

The same network platform from BAI Communications (Boldyn Networks) is being shared by all of the primary operators.

Transport for London have a 20 year concession deal with BAI. This allows them to build the infrastructure needed for fibre-fed mobile connectivity, and then make it available via wholesale. 

Revolutionised Commuting in the Capital

Having Underground connectivity has long been a dream for commuters travelling around London using the tube. 

Chief Commercial Officer for VMO2, Gareth Turpin, says:

“For the first time, our customers can access the latest 5G mobile services deep under London. This is set to revolutionise commuting in the capital, and in the weeks and months ahead we’ll be rolling out ultrafast mobile services at more Tube stations, in tunnels and on platforms to bring high-speed connectivity to our customers as they travel on the Underground.

This is part of our commitment to upgrading the UK and ensuring customers can access our network wherever they are.”

When will all of the London Underground have 4G / 5G mobile broadband connectivity?

The network coverage is set to expand further throughout this year. 

Back in 2020, earlier work by TfL and other mobile operators meant that there are already 4G services on the Jubilee Line between Canning Town and Westminster stations. 

Last month we saw the additions on the Central and Northern Lines outlined above. 

The target is for ticket halls, platforms and Underground tunnels throughout the London Underground network to have 4G and 5G connectivity by the end of 2024. 

Keep your eyes peeled for further announcements! 

Could Mobile Broadband Be Right For You?

If you think your rural home or business could benefit from 4G / 5G mobile broadband then please get in touch with our Wi-Fi experts. We operate across the South of England out of Hampshire, covering West Sussex, Dorset and the Isle of Wight. We are specialists in designing and deploying mobile broadband networks for those who struggle with the more traditional forms of broadband internet. 

Which UK City has the Fastest 5G Speeds? 

Opensignal, an independent global organisation who offer reports and insights into the world’s communication networks, have this month published data revealing the UK’s fastest locations for 5G mobile broadband.

The fastest city for 5G download speeds is Birmingham, coming in at 162.7 Mbps. The fastest region was the West Midlands with 151.4 Mbps 5G download speeds. 

Where does the data come from? 

The numbers in this report come from data collected across hundreds of thousands of devices like Smartphones between November 1st 2022 and January 29th 2023. Primary mobile network operators were then compared across different categories. 

Is 5G faster than 4G?

The study also reported on the uplift in mobile broadband speeds when devices went from a 4G to 5G network in various locations. 

The majority of users found 5G download speeds to be between 3.7 to 5.5 times faster than 4G. The biggest uplift was found in Reading, Berkshire where users enjoyed 5.5 times faster speeds on 5G. London however saw the lowest uplift at a rate of 3.7 times faster than 4G. 

With thanks to OpenSignal for the image 

Is 5G or 4G better in urban or rural areas? 

The report also studied the differences between rural and urban areas when it comes to 5G. You might think that there would be a difference in uplift between these types of areas, but there was actually little difference. For rural areas with 5G, the uplift was 4.7 times faster. In urban areas, the uplift for 5G was 4.5 times faster. 

With this being said, mobile broadband users in urban areas do see significantly faster download speeds on both 4G and 5G networks than those in more rural areas. On 4G networks, download speeds are 23.7% faster (5.8 Mbps) in urban areas. On 5G networks, download speeds are 20.1 Mbps which is 17.6% faster than rural areas. 

5G networks are more limited in rural areas with less coverage. Unsurprisingly, this means that users on a 5G network in an urban area spend more time with an active 5G connection than rural users (9.6% and 6.6% respectively. 

With thanks to OpenSignal for the image 

Where in the UK do users connect to 5G the most?

It will probably come as no surprise that it’s Londoners who are actively connected to 5G networks for the longest.

Unfortunately for us (as we’re based in Hampshire) the South East and South West come very near the bottom of the table when it comes to 5G availability and time spent connected to the network. 

Will mobile network coverage improve in rural areas?

As we mentioned above, the data from this report does reflect on there being a gap between the mobile experience of users in rural and urban areas. 

Thankfully, there is ongoing commitment and work happening to try and improve mobile connectivity in rural areas. 

The UK government and mobile network operators are currently working together on the Shared Rural Network programme to increase the geographic coverage of 4G networks. 

Last year in their 2022 Connected Nations report, Ofcom found that through the SRN and other initiatives, users should be able to get good mobile coverage from at least one operator across 92.2% of the UK. This is a rise of 0.3% from the year before so things are moving in the right direction.

4G and 5G Mobile Broadband Antennas: Frequently Asked Questions

Last week we blogged about 4G and 5G antennas – How to choose them and how to install them. If you are planning to choose and install your 4G/5G mobile broadband antenna yourself, then you might end up asking one or more of the below commonly asked questions. 

As always, if you’re feeling unsure about which antenna you need or how best to install it, then perhaps consider calling in the experts.

Otherwise, let’s have a look at some of the questions that might arise when you’re installing a new 4G/5G mobile broadband antenna. 

4G/5G Mobile Broadband Antennas – Frequently Asked Questions and Handy Hints

Q: My antenna works better on a window than it does outside – Why is this?

Unfortunately when it comes to installing 4G/5G mobile broadband antennas, the most logical solution isn’t necessarily the right one for your property. Hence why sometimes you might find that despite doing everything correctly, you find that your signal and data speed is better indoors (e.g. from your smartphone) than it is the correctly positioned external antenna. This could include getting a better signal and speed from an antenna on a window rather than the top of your property. 

If you find yourself in a situation like this, then the best course of action is to understand the signal readings and bands being used as best you can at various locations around your property. 

Remember that; 

  • Mobile signals can be affected by lots of things – Such as reflections from environmental objects and even the weather. 
  • The router you use can also mix things up by automatically switching bands which could result putting you on one with a slower speed. 

The best way to get an idea of how your antenna and router are responding to the signal is to test different locations around your property and take some measurements. 

Q: How do I know which is the best mobile service for my area? 

There are a couple of ways you could go about this. If you have a friend or colleague on a different network to you, then you can ask to borrow their smartphone and test out the broadband speed in different locations. 

For accurate results when doing this, try to ensure;

  • You test out all the available networks 
  • Use a smartphone that is as up to date as possible 
  • Use a handset on a Pay Monthly SIM (they are less likely to have data restrictions that a PAYG)

You could also consider calling an expert to carry out these tests for you. Our friendly and knowledgeable engineers can visit your property (home or business) and perform no-obligation tests to ensure that a suitable 4G signal and speed can be achieved at your property, and advise on the best equipment and hardware to attain optimum speeds. We do this with specialist signal analysers that provide printable reports showing the best setup.

Q: What is Carrier Aggregation (LTE Advanced) and does my router need it? 

Carrier Aggregation, or CA, means that the router can boost performance by combining several different radio spectrum bands at once. 

You should find that most of the latest 5G networks and urban 4G deployments support CA. 

Unfortunately it’s possible that some rural areas are not reached and so are not supported. However, it’s wise to buy kit that does support CA to ensure you are covered. You should get support for a good selection of bands and speeds from modern mobile routers.

Some things to look out for;

  • Devices that support the 3GPP release 10 standard (they also support LTE-Advanced).
  • From Release 12 and onwards, CA became much more refined.
  • 5G features tend to start from Release 14 and onwards.
  • LTE Categories – These can help you to identify the theoretical peak downlink and uplink speed of a 4G modem. The higher the category, the higher the download/ upload data handling capacity. Remember though, these are theoretical peaks and even on the best networks with optimum signal, lots of CA and capacity you might still not reach that peak.

Q: How do I know which connector I need for my 4G/5G mobile antenna? 

Wouldn’t it be simple if all mobile routers and antennas came with the same external port type? Unfortunately, they don’t – In fact, some routers don’t even allow external antennas! 

Before buying your kit, make sure that both the router and the antenna are compatible with each other in terms of connectors and sockets. 

Types of connector you are likely to come across are:

  • SMA (most common)
  • TS-9
  • CRC9
  • RP-SMA
  • TNC
  • BNC
  • N-Type
  • MMCX
  • FME
  • U.FL.

Already bought the kit and found that the connectors don’t match up? Don’t panic – You should be able to buy an adaptor cable to convert two different types of connector. 

Q: What is a CELL ID and how can I use it to fix performance issues? 

A CELL_ID is the number your device will show for the mast or tower that it’s getting it’s signal from. So where you might not be able to see what band is being used (some devices and apps won’t show you this information) you can still see what the CELL_ID is and whether it changes. 

If the CELL_ID number changes, this means that the signal is coming from a different source. This could indicate that the band has also changed. Monitoring this information can help you work out any issues with performance. 

Q: I’ve got bad signal with good speed, and bad speed with good signal – What is happening?

Unfortunately, a good signal doesn’t automatically mean good speed. We know, it doesn’t seem fair does it?

The reason this can happen is that you could be receiving an excellent signal, but the band you are connected to is congested with lots of users. 

You could also have great signal, but little capacity to carry data through not enough spectrum frequency. 

It also works the other way – You could have a poor signal but find you’ve got decent speeds. Yes we know it seems bonkers. Mobile signals can be affected by various factors so the best thing to do is to keep on testing until you work it out! Or call in the experts and let us do the hard work for you. 

Q: I can see I’ve got good mobile signal from the antenna, but I’m still having connection problems – Why? 

Remember that your connection is only as good as your router. You could receive a strong, fast signal to your correctly located antenna, but the Wi-Fi (ie. the signal from your router to your device) is poor, resulting in connection problems. 

Your mobile broadband router needs to be able to take the signal from your antenna and transfer it to your device. You can find more tips on how to fix common Wi-Fi problems (like your router location) on our blog

How do you know whether it’s the antenna that’s the problem or the Wi-Fi? The easiest way to test where the issue is, is to plug your device into the router through a LAN port. If the signal and connection is still poor, then it’s your antenna. If the signal and connection is strong, then the problem lies with the Wi-Fi. 

Hopefully this blog has helped iron out some of the commonly asked questions when it comes to installing a 4G/5G mobile broadband antenna and some of the issues you might run into. 

If you are still feeling unsure about whether 4G/5G mobile broadband could be the right option for you, or you would like some expert help with choosing and installing the kit, please get in touch with our Wi-Fi experts today

How To Choose and Install an External 4G or 5G Mobile Broadband Antenna

Like with so many of our utilities, we only really notice them when there’s a problem or they’re not working properly. Wi-Fi is just the same! Just like when the power goes out, if your Wi-Fi is on the blink then you know about it – And it is so frustrating! 

Whilst most people are lucky enough to connect to superfast broadband through a wired connection, there are also many rural homes that cannot access and connect to broadband or internet in the same straightforward way. 

Here at Geekabit, we work with lots of people – Businesses and homes – who struggle with the more traditional ways of connecting to the internet and have to turn to mobile broadband through 3G, 4G and 5G. 

And again, many people are lucky to have a business or home within range of a strong enough UK mobile broadband network.

‘Could I benefit from an external antenna?’

There are some more remote rural homes and businesses that find themselves struggling to connect to mobile broadband too. If your business or home is:

– Unable to connect to a decent fixed line ISP 

– Within range of a mobile broadband alternative but find it unstable on various operators

Then you might find it beneficial to get an external antenna installed. But which one do you need? 

Are External Mobile Broadband Antennas Easy to Install?

In terms of actually installing an external antenna, it’s actually pretty straightforward. All you need to do is choose a high, stable location on the outside wall of your house near the roof, and screw the antenna on. Remember to make sure it’s pointing in the right direction (ie. towards the nearest mast). 

You might also choose to mount your antenna on a pole to raise it higher than your house. If you’re going for this option, always make sure that it is stable and won’t cause any damage to the building you are mounting it to. It’s also worth liaising with your local authority before installing a large pole as in some areas, a tall pole could be in breach of planning rules. 

You will also need to drill the cable into the house – It’s very important to avoid any other electrical cables and water pipes whilst you are doing this as well as sealing up the holes afterwards. 

It’s also pretty important to keep the position of your router in mind. Will it be placed near the where the cable feeds into the building? Ideally, the cable between your antenna and router needs to be 5 metres or less otherwise you could find yourself struggling with interference and/ or signal loss. 

If that all feels a little daunting then you can hire a professional installer to do the job for you – Our expert Wi-Fi engineers here at Geekabit can do just this! We operate out of Hampshire, London and Cardiff.  

Whilst the physical aspects of installing an external antenna are quite straightforward, it’s not always easy to choose the right kit. The radio spectrum is variable by nature, which makes it very dependent on your environment. You might manage to install the antenna but not get the outcome you were expecting. 

What antenna you need depends on your specific location and needs. This blog will outline some of the options that could be right for you. Sometimes it’s a case of trial and error to find the right antenna for you – But that’s where it might be best to leave it in expert hands. 

‘Do I need an Omni-directional or Directional antenna?’

When it comes to installing an external antenna, the first thing you need to decide is whether you need an Omni-directional antenna or a Directional antenna. 

Choosing a Directional antenna

If you know where your nearest mast is and have a clear line of sight, then the Directional antenna might be the one for you. Whilst it’s weaker in other directions, the Directional antenna will have higher reception in one direction, hence why it works well for a clear line of sight with the mast or base station. This is often the better choice if you live or work in a rural area. 

What problems can you have with a Directional antenna? 

Using a Directional antenna can run into issues if the station is congested or goes out of service. E.g. during upgrades. 

Choosing an Omni-directional antenna

If you live or work in a more urban, built up area and aren’t sure where the nearest mast is then an Omni-directional antenna could be the better option for you. Whilst they have a lower overall gain, they are able to attract similar reception from all directions. Because the Omni is looking at a wider area, you may find that it provides better reliability. 

Generally, if you are finding and installing an external antenna yourself, then the Omni-directional antenna is probably the one to try first. 

What problems can you have with an Omni-directional antenna? 

It’s possible that because it’s looking at a wider area, the Omni could attract more interference. If you are able to utilise a well positional Directional antenna then you could get better performance that way. 

‘How much power does my external antenna need?’

So you’ve decided whether you need an Omni-directional or Directional antenna. What do you need to consider next? 

You’ll notice that antennas have gain figures in dB / dBi – This is how the power of the antenna is measured. 

In simple terms, the gain of an antenna is the relative measure of its ability to direct radio frequency energy in a certain direction or pattern. What do the gain (dB / dBi) figures on an antenna mean?

We could go into a lot of complicated detail here, but seeing as we’re writing this blog for someone looking to buy and install their own external antenna, we’ll keep it super simple. 

Basically, the higher the gain (dB / dBi) the better the antenna’s performance and range. Obviously, the higher the gain, the more expensive the antenna will cost. 

When you are at this stage of choosing your antenna, it is worth knowing what bands your mobile operator uses so that you can ensure how the different gain values given for an antenna correspond to the spectrum band you will be using. 

‘Choosing an external antenna – What are the challenges?’ 

As we said above, when you are installing a new external antenna, it’s really important to know:

  • Where and which direction the signal is coming from 
  • How strong the signal is
  • Which bands are being used in your local area by local operators

These are some of the biggest challenges you’ll face when installing your antenna. 

‘How can I find out the spectrum information I need to choose an antenna?’

If you go online to mobile operator’s websites you can find coverage checkers (Vodafone, Three UK, O2 and EE (BT)), but these can be rather vague and not always accurate. It’s worth comparing to what Ofcoms Mobile Coverage Checker says too.

Perhaps the best way to identify which bands are being used by your local operator is to download a relevant app or look up the mobile network details on your Smartphone or router. 

These apps will often just tell you the band number for your own operator rather than tell you the spectrum frequency. You’ll find that operators tend to own several bands, but usually use one band for national connectivity. 

What are the most common 4G Mobile Bands in the UK?

800MHz (Band 20)

900MHz (Band 8)

1800MHz (Band 3)

2100MHz (Band 1)

2300MHz (Band 40)

2600MHz (Band 7)

Remember that 5G uses a different band model and is currently only deployed on the 3.4GHz band. 

‘How do I know where my nearest mast is for installing my new antenna?’

So you’ve made sense of the bands on offer in your area from local operators. Next you need to work out where your nearest mast is and whether it’s the most appropriate for your location. Unfortunately it’s not always the option that looks most logical! 

When you’re choosing the most appropriate mast for your use, you need to consider the following:

  • Forms and features of local land surfaces (artificial and natural)
  • Local surroundings
  • Operator choice

There are apps and websites that can help with this such as Mastdata.com and Cellmapper.net. The Opensignal app could also be of use.

Did you know that operators also have sharing agreements with each other? Just to make things a little more complicated. For example, there is a sharing agreement between Vodafone and O2 as well as between EE and Three. What does this mean? Well it means that a mast could be serving more than one operator. 

How do I use signal strength information to position my external antenna?’ 

If you are able to gain an understanding of signal strength in a few different measurements, then you are more likely to position your antenna correctly. 

Signal strength is measured in quite a few different ways, so we’re going to just focus on a few that you are most likely to encounter. These are:

  • Received Signal Strength Indicator (RSSI)
  • Reference Signals Received Power (RSRP)
  • Reference Signal Received Quality (RSRQ)

These measurements are given by a negative dBm (decibel milliWatts) value. In this situation, negative values are actually good (most of the time). They are negative because they represent tiny yet positive numbers on a logarithmic scale, making them easier to consume. For example, -100dBm would be 0.0000000001 mW.

What is a good RSSI signal? Essentially, the closer to 0 dBm, the better the RSSI signal (although it does get more complicated past a certain point with diminishing returns of data speed). An example of excellent 4G RSSI signal would be -65 dBm. A poor RSSI signal would be -85 dBm. 

RSRP works on a similar scale to RSSI, where an excellent 4G RSRP signal would be -80 dBm.  

RSRQ operates on a very different scale, which means that an excellent signal is anything from around -10 dB (not dBm) and a poor signal would be -20 db.

Interestingly, most mobile modems are able to maintain a pretty fast data connection using a poor signal. Problems may arise however in more rural areas where speeds are slower and stability poorer due to the distance from a mast. 

What factors are most likely to affect signal strength? 

  • Distance to mast
  • Interference from competing signals
  • Router band switching
  • Physical obstacles in the environment like buildings, tall trees etc
  • The weather

Of course, these factors are not in your control, but you need to bear them in mind when positioning your antenna in order to get the best signal possible. 

Feeling confident about choosing and installing your external antenna?

If you are about to choose and install an external antenna to improve your 3G, 4G or 5G mobile broadband signal, then hopefully this blog has given you some of the basic information you need to make your decisions. 

If you’re still feeling a bit daunted, then why not get in touch with one of our Wi-Fi experts? We’ve been installing mobile broadband for clients in and around Hampshire, Cardiff and London for a while and can help identify which antenna solution would best suit your needs. Get in touch today! 

PCI: What Is The Difference Between 4G LTE and 5G NR

In this blog we are going to look at the difference between 4G LTE and 5G-NR, specifically in terms of PCI. 

 

What is PCI when it comes to 4G / 5G?

 

PCI is the Physical Cell ID and is one of the most important ways a cell identifies itself in a 4G or 5G wireless network.

The physical layer (or PHY-layer) Cell ID is what determines the Cell ID Group and Cell ID Sector, and it is this that is needed for DL synchronisation. 

DL (Downlink) Synchronisation is the process in which a UE (phone) detects the radio boundary and OFDM symbol boundary. In other words, the exact timing of when a radio frame or OFDM starts. (In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission and a method of encoding digital data on multiple carrier frequencies.) 

This DL synchronisation process is done by detecting and analysing the SS Block. From a UE’s (phone’s) point of view, Downlink is the ‘receiving’ transmitting direction. The SS Block (SSB) stands for Synchronisation Signal Block and refers to the synchronisation signal and Physical Broadcast Channel (PBCH) as a single block that always moves together.

 

Why is PCI Planning important? 

 

If you are planning, designing and deploying a 4G / 5G network, then PCI Planning will be one of your most important steps. 

Making sure your network is properly designed with PCI in mind will ensure your network works efficiently and increases how your resources are utilised. 

Excellent PCI planning ensures QoS for those who are subscribed to your 4G / 5G network.

QoS (Quality of Service) is the use of technologies to control traffic on your network, ensuring that the performance of critical applications meets requirements.

The key goal here is to use QoS and PCI Planning to enable your network to prioritise traffic, offering dedicated bandwidth and lower latency.

PCI is one of the technologies used to enhance performance of business applications, WANs and service provider networks. 

Poor planning in this area can result in PCI collisions and conflicts – Which in turn, negatively impact the overall performance of your network.

 

How is the PCI value created?

 

The PCI value is created from two components – PSS (Primary Synchronisation Signal) and SSS (Secondary Synchronisation Signal). 

The PSS is used to obtain the slot, ub-frame and half-frame boundary as well as providing the cell identity within the cell identity group. 

The SSS is used to obtain the radio frame boundary (10ms) as well as enabling the UE (phone) to determine the cell identity group.

After your UE (phone) has successfully decoded the PSS and SSS, it will be able to calculate the PCI. It uses the following formula:

PCI = (3 × SSS) + PSS

 

How is PCI calculated for 4G?

 

PSS has 3 values (0,1 and 2) and is created using the Zad-off Chu sequence.The PSS helps to accomplish slot and symbol synchronisation in the time domain.

SSS has 168 values (0 to 167) and is produced using concatenation (linking together in a series) of 2 m-sequences (max length sequence). The SSS helps to achieve radio frame synchronisation.

The formula to work out PCI for 4G is therefore:

PCI = (3 * 167) + 2 = 503

This means that there are PCI values varying from 0 to 503 LTE, which in turn supports 504 unique PCIs for 4G. 

 

How is PCI calculated for 5G?

 

PSS has 3 values (0,1 and 2) and created using m-sequence. 

SSS has 336 values (0 to 335) and is generated using the product of 2 m-sequences.

In 5G-NR (a new radio access technology developed by 3GPP for the 5G (fifth generation) mobile network), the basic structure of PSS is the same but the number of SSS is increased.

The formula to work out PCI for 4G is therefore:

PCI = (3 * 335) + 2 = 1007

So the PCI values will vary from 0 to 1007. This means that 5G-NR can support 1008 unique PCIs.

 

What does this difference in PCI between 4G and 5G actually mean? 

 

In the simplest terms, 5G-NR has double the number of PCI’s, compared to LTE 4G. 

5G has more Physical Cell IDs (the actual area that the cell antenna on a cell site is covering). Each 5G NR cell has a Physical Cel lD. 5G has 1008 unique possible Physical Cell ID’s, whereas 4G has only 504. 

So if we’re connected to Vodafone on Physical Cell ID No.1, but we could also see Vodafone signals being broadcast out of that cell tower on different cell antennas using Physical Cell ID No,2 and No3, then our mobile device would know to connect to No1. It would get confused if it connected to No.2 or No.3 and impact the quality of service.

The user device connects to the one physically nearest. So for example, a Vodafone tower has two cell antennas out the top broadcasting the Vodafone signal across an area, which will overlap to a small degree. A user’s device will always want to make sure it is connecting to the same one. You don’t want to connect to one antenna and back to another – It’s this that ruins the quality of service. So you will always try and connect back to the one you were talking to, which is normally geographically the one closest to you. 

The Physical Cell ID is used to identify each space. We don’t want those numbers to overlap too often, or our devices get confused and don’t know which to connect to. If a device can see a Physical Cell ID of 2, and there’s another cell antenna using an ID of 2, it wouldn’t know which one to communicate with.

It is beneficial to know that 5G-NR has more PCI’s available in the planning stages, to enable a higher quality of service (QoS) for end user devices.