Mythbusting: Will the Shutdown of 3G Cause Digital Poverty?

 Have you seen the recent news reports about the withdrawal of 3G by Mobile Network Operators – And how this move will result in ‘millions of people’ being plunged into ‘digital poverty’ by disconnecting them from the internet?

Much of this reporting goes unchallenged and could be seen as scaremongering – Will the consequences of withdrawing the 3G service actually be this dire? 

How much is 3G actually still used? 

3G is actually rather old by tech standards. We’ve had 2 further generations of mobile technology since 3G (4G and 5G, obviously). And 6G isn’t far behind them. 

Can you believe that Vodafone has been using their 3G service for 18 years? What else in the world of technology is around for so long! Vodafone also happens to be the first MNO to start the 3G withdrawal process. 3G data traffic on their network accounted for just 4% in January 2022. In 2016 it was over 30%. 

Did you know that 4G is available to over 99% of the UK’s population whilst they are outdoors? Unfortunately this does fall to between 80 and 87% for geographic coverage. Although, if we’re comparing, 2G only covers 85-93%. We use 2G for basic data like voice and text services. 

When will we lose 3G and 2G services? 

The government, along with all the major mobile network operators, have agreed that by 2033, 2G and 3G signals will be phased out. 

You might be wondering why 3G is being withdrawn first when 2G is obviously older. Well, there are less devices in operation that are critically dependent on 3G services. 4G has been more successful, mainly due to 3G being negatively affected by overpriced spectrum licensing.

2G, on the other hand, is still widely used for basic voice services and limited data for mobiles, as well as other applications like Smart Metres in home energy monitoring systems and similar solutions making it a great low-power fallback option. Therefore, 2G will be around for much longer than 3G. 

The gradual withdrawal of 3G services will differ slightly by mobile network operator. You can find out more information on your mobile operator’s plans to phase out 3G below:

  • Vodafone UK began the withdrawal of 3G at the start of this year and aims to have phased it out by December.
  • Three UK are phasing out their 3G network service gradually over the next 2 years, with it being switched off by the end of 2024.
  • EE are starting their 3G withdrawal by first moving customers off 3G, with a view to switching the 3G network off early next year. 
  • O2 are yet to publicly announce anything but are part of the plans to switch off both 2G and 3G by 2033 and are likely to follow a similar timeline as those above. 

Is the phasing out of 3G a good thing or a bad thing? 

The recent news reports we alluded to earlier would suggest that the withdrawal of 3G services would disconnect a lot of people from the internet and result in digital poverty for millions. But is the phasing out of 3G really a negative thing, like these reports suggest?

Let’s take a closer look at a couple of the worries surrounding the 3G switch off, and hopefully alleviate them.

‘My 4G signal is weak – Will I be unable to access mobile data?’

We can totally see why this would be a worry. If you find that your 4G signal coverage is weak in your area and your handset often falls back to 3G, it makes sense that you would be concerned that you would be disconnected from mobile data altogether once 3G is switched off. Especially if your fixed line broadband was also poor locally. 

What you need to bear in mind is that when the 3G service is switched off, the spectrum that would have been used for that will then be used for 4G and 5G services instead. This means that those who often find their weak 4G signal defaults to 3G, would see an improvement in 4G signal once 3G has been phased out. Happily, this also means that mobile broadband speeds would also improve.  

Of course, this does depend somewhat on the operator itself and their approach in your area. There is a chance that some people could have issues if their operator wasn’t to prepare the updated coverage after 3G is phased out. Let’s remember that that’s not in the best interests of the operator either, and all MNO’s are committed to minimising any problems caused by the withdrawal of 3G services. 

Don’t forget that a weak 4G signal can actually still be better than a strong 3G signal. The data capability available to you isn’t always accurately depicted by how many signal bars you see on your screen. 

It’s also worth noting that current plans for mobile connectivity mean that coverage and performance are only going to improve. The Shared Rural Network, an industry led project worth £1 billion, is working hard to bring 4G to 95% of the UK in geographic coverage by the end of 2025.  

What do the operators themselves have to say about the potential problem of weak 4G signal? 

It would seem that UK mobile network operators are prepared for the phasing out of 3G and the subsequent effects on 4G signal. 

Vodafone says:

“By repurposing the 3G network – we can grow the UK-wide reach of our more energy efficient 4G and 5G networks instead – this means faster data speeds, higher quality voice call services and a chance to continue improving connectivity in previously ‘cut-off’ areas, including rural communities and the London Underground.”

  • They will be optimising their 4G and 5G networks as a part of their phasing out of 3G. In fact, some of their 3G spectrum has already been re-directed as a part of this plan. 
  • They have also contacted customers of theirs who could be impacted by issues once 3G has been switched off. So no news is probably good news! 

Three says:

 “Retiring 3G enables us to repurpose network assets where our customers need them (4G&5G) … this plan has been carefully developed by our network teams to ensure that it benefits our customers.”

  • A tiny 3% of their network traffic was 3G so they expect minimal disruption
  • They believe their customers can expect “faster downloads, better quality streaming and a more reliable experience” when 3G is switched-off.
  • Ahead of the 3G switch off, Three are upgrading many of their legacy 3G sites and repurposing them for newer technologies.
  • They suggest that customers who have a 4G / 5G compatible handset will not be impacted by the phasing out of 3G. 

EE says:

  • Whilst the re-farming of 3G will be a process that takes time, the spectrum used for 3G is planned to be used for 4G and 5G, just not immediately. The locations that have the highest need (those that are congested or at risk of congestion) will be the initial focus for the reuse of 3G spectrum.
  • This operator is focusing on making sure that their 4G has enough capacity to cope once 3G has been switched off. In areas where they have both a 3G and 4G service, the 3G doesn’t generally reach beyond that of their 4G services. They believe they have the tools to identify if any work is needed on spectrum and in what areas so that they can be prioritised.
  • They are currently refreshing their 4G and 5G network and replacing some 5G vendor equipment. They need to finish this network refresh before they can re-farm the 3G spectrum. Once the work has been completed, it will be easier to use the remaining 5MHz from the 3G spectrum. Upgrades will be a mix of remote and site visits depending on configuration. Only modernised sites will be able to re-farm the 3G spectrum to be used for 4G and 5G, hence why the process will take some time. 

O2 says:

Not a lot… Yet! As we said above, O2 haven’t publicly announced their plans to phase out 3G services like the other operators have so it’s all a bit quiet from the O2 camp. 

‘I have an old device that doesn’t have 4G capabilities – How will I get online when 3G is phased out?’

The DPA (Digital Poverty Alliance) is concerned that people with older, more basic devices that don’t have 4G capabilities will fall into ‘digital poverty’ once 3G is phased out if they rely on that device to get online. 

But is this a legitimate concern? Here are some reasons why this may be an unfounded worry. 

  • There are basic phones that have 4G capabilities that have been available on the market for a number of years. They are generally lower cost than more elaborate devices, at around £20-£50 for the handset.
  • Operators often offer bundles with cheap plans and almost free handsets on the more basic models
  • Some operators and charities give more vulnerable users basic handsets for free, so they only need to pay for the tariff

That being said, we realise that there will be people out there that may currently have a device that doesn’t support 4G. There are options out there so anyone who is worried have a shop around – A basic 4G compatible handset and monthly plan for less than £10 a month are out there. 

The best option if you are concerned is probably to ring your current operator and see what they can offer you. 

How Can You Make Sure You’re Not Affected by the 3G Switch Off? 

We’re not saying that nobody will be affected by the phasing out of 3G services. There are always going to be the odd few where unique cases mean that something goes awry. Let’s bear in mind that some handsets will have better reception than others! 

We’re feeling hopeful that the operators will have planned the 3G withdrawal properly and will minimise the impact on their customers. I guess we’ll find out! 

Saying that, here are a few things you can look out for to try and minimise any disruption to your coverage and connections:

  • Ensure your current handset (or any new one you buy) has VoLTE (Voice-over-LTE) capability. Not all 4G handsets can make calls over the same generation of network technology, but if your handset supports the above it will be helpful.
  • Choose a handset that supports Wi-Fi Calling. Whilst not as common on the more basic handsets, if you have a home broadband connection then this would come in very handy.
  • Anyone with a 4G handset having issues after the 3G switch off should perhaps consider changing mobile operator and see if that fixes the problem. Each operator will have different coverage, varying by site, so it might be worth switching around. This also goes for the above – If you have a VoLTE or Wi-Fi Calling enabled handset but are having issues, it could be the operator.
  • Remember that when making calls and texts, 3G/4G handsets will fall back to 2G if having trouble anyway. 

Despite the sensationalised articles about the phasing out of 3G services in headline news, try not to worry. We deal with technological advances all the time in this modern world. You could choose to see the withdrawal of 3G as an upgrade to 4G/5G instead of a negative.

There may well be teething problems for a small percentage of mobile users, but we’re pretty sure that mobile operators will find a solution that works for all when the time comes to switch off 3G services. 

How Can I Accurately Check My Mobile Signal Strength? 

Did you know that there is much more to mobile signal strength than just the signal bar display? The real test for measuring your mobile signal strength accurately is the Field Test Mode. The results from this test can help you determine whether you might need a mobile signal booster. 

There are many factors that can affect your mobile signal strength, for example, whether you are inside or outside a building, how far you are from the cell tower etc. So let’s look at the Field Test Mode and how to use it. 

Signal Strength: How To Choose a Mobile Signal Booster

You can’t choose a mobile signal booster for your home or business if you don’t know how strong the outside signal is. And we don’t just mean ‘how many bars you’ve got.’ Yes, that gives some indication of how strong the signal is, but there is a more accurate way to measure mobile signal strength. 

Did you know that different phones have different numbers of bars? Some have 5, some have 4, some even have 8! Not only this, but even when phones have the same number of bars for signal strength, there isn’t actually any standardisation for them. Having 4 bars of signal on one phone can mean something different to having 4 bars on another phone. 

It’s pretty clear that measuring mobile signal strength purely by the number of bars isn’t very specific.

When experts measure mobile signal strength, they measure it in decibels. They are very precise and are much more informative and accurate for doing a mobile signal strength test. Testing in this way means you can find out just how strong the signal is that you are receiving. 

What Is Field Test Mode? 

You may not realise that the majority of phones have Field Test Mode – A built-in setting that can show you very useful information about your phone. This includes the signal strength, measured in decibels. 

We can imagine that you’ve already tried to find this on your phone right this second to check it out! We don’t blame you. But let’s just go through a couple of things to consider before you start taking mobile signal strength readings.

  • Carrier – Remember that the signal strength readings you take are only true for the mobile carrier of said phone. To compare the signal strength to other carriers, you would need phones on those carriers. Basically, even if you get 4 different service providers, you can only test the signal strength of the carrier of your phone when in Field Test Mode. 
  • Network – You need to know if the signal you are measuring is from an LTE network or not in order to interpret the results. LTE readings can be read differently from previous generation networks (like 2G, 3G and 4G0. 

How do you use Field Test Mode on an iPhone?

If you have an iPhone, you’ll find that it has a hidden built-in Field Test Mode app. Follow these steps to access it:

  1. Go to Settings > Wi-Fi and turn Wi-Fi Off.
    You will need the Wi-Fi to be turned off in order to be able to see the network you are connected to (e.g. 3G). 
  2. For iOS 9.3 and above: Go into Settings > Cellular > Cellular Data Options > Enable LTE and turn LTE to Off.
    For iOS 9.2 and below: Go into Settings > Cellular > Enable LTE and turn LTE to Off.
    As we said above, LTE readings can be very different from previous networks. In order to be able to best interpret the results, it’s ideal to get your signal readings from a previous generation network.
    If you like, you could then repeat the site survey with LTE enabled, which would give you readings for different generation networks. 
  3. To launch the Field Test Mode app, go to your Phone Keypad, dial *3001#12345#* and press the Call button. You’ll notice that where before you had signal bars, you now have a negative number. This negative number is the decibel signal strength reading. You should also see the carrier name and the type of network.  
  4. Tap on LTE
  5. Tap on “Serving Cell Meas”
  6. Look for “rsrp0” and the number corresponding will be the numerical measurement of the iPhone cellular signal strength in dBm

To start taking signal strength readings, you need to move to the location where you want to take the reading and then wait for between 30 and 60 seconds for the signal strength readings to catch up. You can record the signal strength, network type and carrier. 

Once you’ve finished taking readings, you can return to your normal iPhone settings by pressing the home button. Don’t forget to go back in and enable Wi-Fi and Cellular LTE! 

How do you use Field Test Mode on an Android?

To access Field Test Mode on an Android follow these simple steps:

  • Go to Settings > “About Phone”
  • Depending on the model of your phone, look for ‘Network’ or ‘Status’ to see your numerical signal strength in decibel 
  • You can usually see Network Type near the signal strength option. 

If you’re after a bit more information, there are apps you can download from Google Pay that will give you the signal strength in decibels as well as other info. To see the available apps search for ‘cell signal’ in the App Store. DOwnload whichever one is compatible with your phone, tablet or device. 

Just like with an iPhone, get ready to take signal readings by moving to the location you want to know the signal strength for. Stop and wait for between 30 and 60 seconds to let the signal readings catch up with you and then you can record them along with the network type (2G, 3G, 4G, LTE etc). 

Keep doing this until you have recorded the signal strength for all the locations in your home or business. 

What would I use mobile signal strength information for? 

Knowing the mobile signal strength for your living or working space enables you to see where you might need to boost the signal. Using Field Test Mode can enable you to perform a site survey, which gives you a floor plan analysis of your home or business.

The purchase of mobile signal boosters (also known as network repeaters, signal amplifiers, signal repeaters etc) should be based on the results of a site survey. 

Carrying out a site survey involves taking several accurate signal strength readings from in and around your home or office building. These readings can help you to calculate whether a signal booster will help and what devices you will need. 

Field Test Mode is ideal for carrying out a site survey. Basing it on signal bars is not reliable compared to the precise numerical value of decibel you get from this tool. Carrying out a site survey using Field Test Mode is very straightforward (as you will have seen from the steps above) and helps you to measure the mobile signal strength of your home or business using just your phone. 

What do the Decibel numbers mean? 

If you are connected to a non-LTE network (2G, 3G, 4G H+), the value you get is the Received SIgnal Strength Indicator (RSSI). This is a method of measuring wireless signals. 

LTE networks however, are usually measured in Reference SIgnal Received Power (RSRP) which is why LTE readings can be very different to the readings for previous generations like above. 

You’ll find that Decibel signal strengths are usually double or triple digits and are marked as a negative number. Your phone might not show the negative sign though. The stronger the signal, the closer the number is to zero, so -89 is a stronger signal that -99. 

The unit of measurement in all this is decibel (dB) – This measures the power of the mobile signal. This value is telling you how strong your phone is receiving the signal from your provider’s mobile network. 

Did you know that the Decibel scale is not linear? If the signal strength increases by 3dB, then it is twice as strong. Signal strength that increases by 10 dB is an increase of ten times the signal strength. So, in real terms, an RSSI value of -50 is actually ten times stronger than an RSSI measurement of -60. 

Why is Field Test Mode so Important?

If you are planning to install a mobile phone signal booster, then it’s absolutely vital that you have an accurate reading of your Received Signal Strength across your business or home. Field Test Mode can help you do just this and inform your site survey ready to help you make the right booster purchase. 

Field Test Mode enables you to see exactly how strong your mobile signal strength is – Both inside and outside your building. 

Field Test Mode is an essential tool when it comes to assessing how a mobile signal booster can improve your reception.

Call the Experts

If all this has got your head in a bit of a spin, then why not let the experts do it for you? Our Wi-Fi Experts are trained professionals in all things wireless. We can provide you with a site survey to help assess your mobile signal strength. Give us a call today

4G LTE Antenna – What Do I Need to Consider? 

If you are using a 4G LTE broadband connection, or plan to, then you’ll need to be considering your external antenna. 

 

4G broadband is a fantastic option if you struggle with a standard broadband connection, especially if you live or work in a more rural area. Over the past few years we’ve seen a big uptake in 4G and mobile broadband options – For homeowners as well as businesses. 

 

What you don’t want is to switch to mobile broadband, and then end up with download speeds that are lower that what you were expecting. Whilst this may simply be down to poor reception, there are some other factors that can come into play. 

 

So, with you as the user, what considerations do you need to make to ensure your 4G mobile broadband connection will be the strongest it can be?

 

Did you know that LTE is MiMo technology?

LTE, like 11n Wi-Fi, is a multi-stream radio, multiple in/multiple out (MiMo) service. So similarly to 11n Wi-Fi, LTE uses multiple radio data streams to and from the end client – Which means the more streams of data the client can take, the faster the broadband. 

Just like in 11n Wi-Fi, the number of streams is T (the number of transmit radio streams) multiplied by R (the number of receive streams the connection can support) so TxR. This means that if something supports 2×2 streams, it can support twice the upload and download speed of a device with 1×1. In 4G LTE, you get anything from 1×1 to 8×8 stream capability (including all the possible mixes in between them). 

The number of transmit and receive streams dictates how many antennas the client needs. So for a 1×1 service, you would only need a single antenna. For a 2×2 service you would need 2 antenna. You get the idea. 

A connection can only support the number of streams the service provider is capable of via their masts. It is also dependent on the client device and its radio capabilities. 

The majority of devices – Like phones and routers – have dual stream capabilities. 

 

Choices of Antenna

If you’ve already been looking for a 4G LTE antenna then you’ll likely already have realised that there can be a difference in price. One of the main differences between antennas will be, as we said above, the number of connections they have. 

 

As you’ll have probably guessed, the more connections they have, the picier the get. So a 2×2 (or 2×1 or 2×2) device will cost more than a 1×1 device. You’ll typically see a choice between single (1×1) and dual connection (2×2) antennas. 

 

In most scenarios, you will be wanting a dual connection (2×2) antenna so that it supports the functionality of your router and other devices with dual stream, MiMo functionality.

 

But how do you know if the antenna will be any good? 

 

That comes down to polarisation. There needs to be a physical difference between the radio streams so that the receiver can differentiate between them. This can be as simple as mounting the antennas, leaving a physical gap between them of a few inches. 

 

It’s also a good idea to have each antenna at a different angle – Ideally at 90 degrees to each other. This is because although the radio waves might leave the mast in a lovely vertically polarised fashion, after a few reflections they will likely not be like that any more. Setting up the antenna so that they can also receive radio waves that are no longer vertically polarised will mean you will better receive the signal – A cross shape would achieve this. 

 

Do I need a Directional or Omni-Directional Antenna Set Up? 

Whilst it might be tempting to just opt for the highest gain directional antenna, this isn’t actually always the best choice – For 4G LTE or Wi-Fi. 

 

If you imagine a radio wave travelling from the mast to your receiver, with nothing in the way, it would have a straightforward route and an uninterrupted signal. In real life, this is unfortunately not the case. The signal cannot go through anything solid, so whenever something gets in its way, it reflects and scatters from those objects until it reaches the antenna. This means that the radio signal could come to your receiver from all different directions. 

 

Directional antenna, although high gain, have limited coverage in terms of their angle. So with radio waves potentially coming in in all directions, the directional antenna is going to cause you problems. 

 

The best situation for a directional antenna is when there is a clear line of sight between the mast and the mount of the antenna – Which is not a very common thing. 

 

The omni-directional antenna might well be lower gain, but it should pick up the signal regardless of what directional the radio waves are coming from. 

 

The best way to improve the signal you receive is to mount the antenna outside and as high up as possible.

 

Directional Antenna Pros

  • Can occasionally give a better, stronger and cleaner signal when carefully aligned with line of sight 
  • With a clear line of sight (and no ambiguity) then a directional antenna would be preferred choice

Directional Antenna Cons

  • Careful alignment with line of sight can be very tricky
  • Without line of sight, you have to rely on how it reflects and scatters
  • Changes in environment can result in how the signal is reflected (e.g. something as simple as a dry wall reflects better than a wet wall)
  • It is harder for the system to switch to a different mast (this could be dictated by the provider)

 

Omni-Directional Antenna Pros

  • Easy and quick installation (no tricky, careful alignment needed)
  • It is easy for the system to change transmitter masts
  • Antenna can be mounted outdoors, making a significant improvement in signal despite the lower fain

 

Omni-Directional Antenna Cons

  • In comparison to the directional antenna, the omni has lower gain
  • Can be more susceptible to radio frequency interference coming from different directions

 

Frequency Bands

There are a number of frequency bands that are used for 4G LTE in the UK. There’s the 800MHz band, the 1400MHz / 1.4GHz band, the 1800MHz / 1.8GHz band, the 2100MHz / 2.6GHz band, the 2300MHz / 2.3GHz band, and the 2600MHz / 2.6GHz band.

 

Although not set in stone, you generally find that the lower frequency bands are used more in rural areas due to them having longer transmission range than the higher frequencies and having to cover a larger geographical area. The higher band would likely be used more in built up towns and cities. 

 

What does this mean for antenna? Well, it means that you, as the end user, need to ensure that your antenna will support the service and frequency band of your provider. If you are sensible and savvy, you will choose an antenna that can cover the different frequency bands in case your service/provider changes. 

 

Stream Bandwidth

The available spectrum is divided and allocated between providers into sub-bands. The connection you get as the end client will depend (and vary) on how many clients the local signal mast can support as well as the bandwidth. 

 

If you live or work in a high user area, the density will mean that you may struggle with throughput speed or even getting a connection in the first place! 

 

What high user density situations could impact your 4G connection? Well, if you live near a football stadium or a busy motorway, you may find that on match day or during a bad traffic jam, your internet connection comes to a standstill as well! 

 

Which Antenna Do I Need for my 4G LTE Connection? 

 

How do you choose? Let’s take a look again at the main considerations you need to think about to ensure the best possible connection. 

 

Single or Dual Antenna

 

Does your router only have a single antenna connector? If so, then you should probably choose an external antenna with a single connector. 

 

If your router has a dual stream connection then you need to choose an antenna with 2 connectors. You could also choose two single connection antennas. 

 

Remember – If the local signal mast sends out a 1×1 service, then that’s all you’re going to get, even if you have a router and antenna set up that supports 2×2. Having the 2×2 compatible service won’t see you any difference if it’s a 1×1 signal service.  

 

Directional or Omni-Directional Antenna? 

We’re not trying to tell you what to do… But our Wi-Fi expert’s advice would be, in most scenarios, to go for an omni-directional antenna. As we mentioned above, it’s tempted to just go straight for the antenna with the biggest gain, usually the directional, when you could face very tricky alignment issues. Very few properties, business or home, have a clear line of sight between their local mast and their antenna. Unless you have this clear line of sight, then an omni is the best option.  

Correct frequency

Remember to ensure that your choice of antenna will work with the frequency range coming from your service provider and local mast. It’s only going to work if your frequency band matches what your antenna supports! 

 

To avoid potential issues when services or providers change, you should aim to choose an antenna that covers all the 4G LTE bands here in the UK. That means that your antenna should always work, even if you change provider or your local service changes. You might have to pay a little more, but it could save you problems in the future. 

 

Location

You should always mount the antenna wherever it has the best line of sight to the local mast. Sometimes you might not be able to see the signal mast, especially if you live or work in a very built up area. Even if you cannot see the mast, bear in mind the direction it’s in – Does your antenna need to be at the front or the back of your building? Even without a clear line of sight, this will vastly improve the signal you get. 

 

Generally speaking, the higher up you can mount the antenna the better! 

 

Also make sure that you’re not locating it close to a thick wall or anything metal. Even an omni-directional antenna would struggle to get a good signal in these situations! You want to make it as easy as possible for the signal to reach the receiver on your antenna. 

 

I’ve followed the advice but still don’t have good download speeds? 

You could have the perfect signal – And still not get good download speeds. This could be down to a few different reasons:

  • The service capabilities of your provider (the frequency they are allocated)
  • The service provided from the local mast
  • The capabilities of your router
  • If you live or work in a high user density area with lots of people trying to connect at the same time

 

Whether or not this matters depends on what you are using your connection for. If you are a business and are relying on your 4G LTE connection for your business operations, then this is going to be an issue. 

 

Trust the Experts

 

Here at Geekabit, our Wi-Fi experts can tell you just how reliable a 4G (or 5G) mobile broadband connection would be with one of our surveys. 

 

If you’re struggling with wired broadband, and not getting the reliable internet connection you need in your rural business or home, then 4G / 5G could be a fantastic option for you.

 

It can feel like a big jump to give up on your wired broadband connection and opt for 4G – Which is where our Cell Coverage 4G survey comes in.

 

We can tell you exactly whether 4G broadband would work for you, and which network would be most reliable.

 

PCI: What Is The Difference Between 4G LTE and 5G NR

In this blog we are going to look at the difference between 4G LTE and 5G-NR, specifically in terms of PCI. 

 

What is PCI when it comes to 4G / 5G?

 

PCI is the Physical Cell ID and is one of the most important ways a cell identifies itself in a 4G or 5G wireless network.

The physical layer (or PHY-layer) Cell ID is what determines the Cell ID Group and Cell ID Sector, and it is this that is needed for DL synchronisation. 

DL (Downlink) Synchronisation is the process in which a UE (phone) detects the radio boundary and OFDM symbol boundary. In other words, the exact timing of when a radio frame or OFDM starts. (In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission and a method of encoding digital data on multiple carrier frequencies.) 

This DL synchronisation process is done by detecting and analysing the SS Block. From a UE’s (phone’s) point of view, Downlink is the ‘receiving’ transmitting direction. The SS Block (SSB) stands for Synchronisation Signal Block and refers to the synchronisation signal and Physical Broadcast Channel (PBCH) as a single block that always moves together.

 

Why is PCI Planning important? 

 

If you are planning, designing and deploying a 4G / 5G network, then PCI Planning will be one of your most important steps. 

Making sure your network is properly designed with PCI in mind will ensure your network works efficiently and increases how your resources are utilised. 

Excellent PCI planning ensures QoS for those who are subscribed to your 4G / 5G network.

QoS (Quality of Service) is the use of technologies to control traffic on your network, ensuring that the performance of critical applications meets requirements.

The key goal here is to use QoS and PCI Planning to enable your network to prioritise traffic, offering dedicated bandwidth and lower latency.

PCI is one of the technologies used to enhance performance of business applications, WANs and service provider networks. 

Poor planning in this area can result in PCI collisions and conflicts – Which in turn, negatively impact the overall performance of your network.

 

How is the PCI value created?

 

The PCI value is created from two components – PSS (Primary Synchronisation Signal) and SSS (Secondary Synchronisation Signal). 

The PSS is used to obtain the slot, ub-frame and half-frame boundary as well as providing the cell identity within the cell identity group. 

The SSS is used to obtain the radio frame boundary (10ms) as well as enabling the UE (phone) to determine the cell identity group.

After your UE (phone) has successfully decoded the PSS and SSS, it will be able to calculate the PCI. It uses the following formula:

PCI = (3 × SSS) + PSS

 

How is PCI calculated for 4G?

 

PSS has 3 values (0,1 and 2) and is created using the Zad-off Chu sequence.The PSS helps to accomplish slot and symbol synchronisation in the time domain.

SSS has 168 values (0 to 167) and is produced using concatenation (linking together in a series) of 2 m-sequences (max length sequence). The SSS helps to achieve radio frame synchronisation.

The formula to work out PCI for 4G is therefore:

PCI = (3 * 167) + 2 = 503

This means that there are PCI values varying from 0 to 503 LTE, which in turn supports 504 unique PCIs for 4G. 

 

How is PCI calculated for 5G?

 

PSS has 3 values (0,1 and 2) and created using m-sequence. 

SSS has 336 values (0 to 335) and is generated using the product of 2 m-sequences.

In 5G-NR (a new radio access technology developed by 3GPP for the 5G (fifth generation) mobile network), the basic structure of PSS is the same but the number of SSS is increased.

The formula to work out PCI for 4G is therefore:

PCI = (3 * 335) + 2 = 1007

So the PCI values will vary from 0 to 1007. This means that 5G-NR can support 1008 unique PCIs.

 

What does this difference in PCI between 4G and 5G actually mean? 

 

In the simplest terms, 5G-NR has double the number of PCI’s, compared to LTE 4G. 

5G has more Physical Cell IDs (the actual area that the cell antenna on a cell site is covering). Each 5G NR cell has a Physical Cel lD. 5G has 1008 unique possible Physical Cell ID’s, whereas 4G has only 504. 

So if we’re connected to Vodafone on Physical Cell ID No.1, but we could also see Vodafone signals being broadcast out of that cell tower on different cell antennas using Physical Cell ID No,2 and No3, then our mobile device would know to connect to No1. It would get confused if it connected to No.2 or No.3 and impact the quality of service.

The user device connects to the one physically nearest. So for example, a Vodafone tower has two cell antennas out the top broadcasting the Vodafone signal across an area, which will overlap to a small degree. A user’s device will always want to make sure it is connecting to the same one. You don’t want to connect to one antenna and back to another – It’s this that ruins the quality of service. So you will always try and connect back to the one you were talking to, which is normally geographically the one closest to you. 

The Physical Cell ID is used to identify each space. We don’t want those numbers to overlap too often, or our devices get confused and don’t know which to connect to. If a device can see a Physical Cell ID of 2, and there’s another cell antenna using an ID of 2, it wouldn’t know which one to communicate with.

It is beneficial to know that 5G-NR has more PCI’s available in the planning stages, to enable a higher quality of service (QoS) for end user devices.



Wi-Fi and Connectivity Options for Village Halls

Did you know that village halls in need of a bit of updating and renovation can apply for a share of a £3m fund, all in honour of the Queen’s Platinum Jubilee?

 

This follows the tradition of village hall investments for Queen Victoria’s Diamond Jubilee in 1897 and King George V’s Silver Jubilee in 1935. 

 

125 lucky village hall recipients will have a share of the £3m fund, which can be put towards renovations and building improvements including Wi-Fi.  

 

You might well be hosting or celebrating in your local village hall for this weekend’s Jubilee celebrations! Village halls are often the heart of communities, bringing people together. It’s vital these hubs stay well connected with strong, reliable Wi-Fi. 

Wi-Fi for Village Halls – A Quick Guide

If you’re a part of the committee that looks after your local village hall, then you’ll know that there is an ever-increasing need for these community buildings to offer broadband and Wi-Fi access to their users. 

 

Not only will this support a wide range of community activities and events, it will also enhance the facilities you can offer as a venue to those who hire your space. 

 

So what do you need to consider to improve digital connectivity for your communities and businesses by making sure your village hall is well connected? 

 

Get a Broadband Connection


Before even thinking about Wi-Fi or broadband, you need to make sure you have a telephone landline. The only exception is if you are able to get cable or fibre access to the hall. You can read more about FTTP in one of our previous blogs here. Make sure that you have a business contract rather than residential, as it will be for public use. 

 

To get a new telephone line, order one through BT.com. After that’s done, you can upgrade to broadband. Always make sure you check with the ISP that you are able to make your internet connection available to the public before placing your order. 

 

If you want to get broadband without a landline, you would need to be able to have a cable, full fibre or mobile broadband connection. More on that later! 

 

Not got an official postal address? Some village halls don’t actually have an official post office address which can cause problems with some ISP’s as they may insist that you have one in order to place an order. If you find this is the case, you can contact the Post Office and request an official address here.

 

Some ISP’s will accept what’s known as an ‘unserved’ building but they may ask to do an initial survey before they confirm your order.  

 

How much will it cost to install Wi-Fi in a village hall?

You will need to incur some costs to get Wi-Fi successfully set up in your village hall. Bear in mind the following likely outgoings:

  • Installation and connection costs for a new telephone line (plus VAT) and broadband connection (if required)
  • Line rental for the telephone line (ongoing costs)
  • Data usage charges from broadband / Wi-Fi use (ongoing costs)
  • Any work required to install the Wi-Fi router in a secure location, plus additional devices that may be needed to boost Wi-Fi signal 

 

You can help keep costs to a minimum by shopping around for the best contract available on price comparison websites. Remember you need a business contract, not a residential one! Make sure you balance out the costs with data usage limits and of course, reliability.

 

Remember though, making improvements with the Wi-Fi in your village hall is investing in its successful future. It’s vital that these community hubs are well connected for their users. And even better if you can get the costs covered by securing part of the £3m Jubilee fund!

 

Security

 

We cannot express enough how important it is to make sure that your Wi-Fi is secure. You should manage and filter the access to your Wi-Fi signal. 

 

If you were to allow unmanaged access to your Wi-Fi, people may use your broadband connection for illegal purposes. By providing the Wi-Fi for this, you could be liable. 

 

Luckily for you, it’s super easy to manage your Wi-Fi security – And definitely not something that should put you off setting up a Wi-Fi connection in your village hall. 

 

To minimise the risk of inappropriate use, you should:

 

  • Install your router in a secure place where only authorised users are able to physically access it. Don’t let people connect to your router via Ethernet cable as they could make changes.
  • Routers usually display the passwords you need in order to manage and access your Wi-Fi connection. If you think it’s possible for unauthorised users to access this information, then consider changing the User ID and admin password (instructions on how to do this should be in your router user guide).
  • Regularly change your Wi-Fi access password for users. This means that only current users will be able to use your Wi-Fi connection, rather than someone who isn’t authorised or is re-using a password they’ve previously been issued with.
  • Always ensure that the parental control setting is switched on. This prevents access to any unsuitable websites on your Wi-Fi connection. You can use your router manual to set appropriate firewall settings to set the level of restriction required. 

 

 

The router in our village hall doesn’t reach the whole building

 

If you already have a router installed in your village hall, but it’s not reaching far enough and you’re struggling with black spots or slower Wi-Fi in certain places then you may need to extend your Wi-Fi coverage. 

 

This is particularly relevant if you have a large village hall building – The signal just may not be strong enough to reach everywhere it needs to from one router. 

 

We mentioned above that it’s important for the router to be in a secure area so unauthorised people cannot access it. This could mean that it’s been placed in a less than ideal location for signal strength and connectivity. It’s vital to balance the two! 

 

Ideally, you will be able to place the router in a central location, but if that is not the case then you may need to install other devices to extend the signal to other locations within your village hall building. You could potentially use a powerline adapter or a Wi-Fi extender to boost the signal strength and get wider Wi-Fi coverage in the building. 

 

Mobile Broadband for Rural Village Halls

You and your users might not be in London, but that doesn’t mean that you don’t expect the same Wi-Fi connection that you get in urban areas – Despite being in more rural ones. 

 

Unfortunately there are many parts of the countryside that are suffering from a broadband deficit – Indeed, there seems to be a connectivity imbalance across the countryside, with many village halls struggling.

Over the past year particularly, we’ve installed countless numbers of external 4G antennas and routers in rural areas, effectively replacing the broadband through the telephone cable using a data SIM card.

 

You can read more about our 4G Mobile Broadband solutions in a previous blog of ours here

 

If you are wary about whether Mobile Broadband could work in your more rural village hall, then our Cellular Survey could be just what you need. We can map the availability of cellular and data coverage within a building and report the details of phone coverage for 2G, 3G, 4G/LTE and 5G. We can measure the cellular connectivity, data upload and download speeds and the occurrence of dropped and failed calls for all the main mobile network operators. You can read more about this here

 

Want to know more about how Geekabit could help get your village hall connected?

For further information about securing a strong Wi-Fi connection in your village hall, please email our Wi-Fi experts at [email protected] and someone will be in touch as soon as possible.

 

We work out of London, Hampshire and Cardiff, covering community buildings, businesses and larger residential properties. 

 

How can I improve my 4G signal speed?

Is there anything worse than slow Wi-Fi or a poor data connection? Waiting for a webpage to load or watching a video b-b-b-buffer. It is so frustrating! 

 

More and more people are now opting for 4G or 5G cellular connectivity in their homes, replacing fibre broadband that’s too slow. Many households are also using 4G/5G connectivity as a back up in the form of hybrid broadband. 

 

Why do people choose cellular broadband? Sometimes it’s because of the price of regular wireless broadband, which can be expensive – Especially in more rural areas where it’s also slow. In these instances, cellular signal if more often than not a faster option. 

 

4G LTE and 5G do have their own restrictions though. Slow data rates on 4G LTE and 5G are also common. But is there a way to improve your 4G signal speed and data rates?

 

How Can I Improve My 4G LTE or 5G Speed?

 

There are three main things you can try to help improve your 4G and 5G data rates:

  1. Update your Device

    If you are using old devices, you may only be connecting to older bands. Using a new phone, tablet, laptop or hotspot could help you to connect to new bands. The newer the device, the more likely they are to support a newer version of the 4G LTe or 5G spec, which would in turn bring you faster data rates.

  2. Try using External Antennas

    Many major carriers have hotspots that support external antenna ports. You may find that using an external antenna could help you to improve signal strength, signal quality and help you access bands that aren’t getting indoors. 

 

  1. You could try a Signal Booster

    The majority of phones (as well as some hotspots) do not have external antenna ports. If you are trying to improve data rates on your phone, you could use a signal booster. They work by amplifying your signal as well as increasing the signal strength of the signal. You can also use them alongside external antennas – They enable the rebroadcast of improved indoor signal.

What configurations can I use to improve 4G / 5G signal strength?

There are a couple of configurations that our Wi-Fi experts would recommend giving a go.

 

1. Latest Hotspot + Directional Outdoor Antennas

 

If you’re happy to use Wi-Fi for distributing your signal indoors, then you can use a hotspot (from your chosen carrier) used alongside external antennas which are mounted on the outside of the building.

Pros

  • If you already have a hotspot, this can prove highly cost-effective
  • Easy to support MIMO (multiple input, multiple output). Using multiple antennas can help improve performance
  • Offers the fastest available data rates
  • Using directional outdoor antennas can help improve signal to interference and noise ratio (SINR) as well as enabling you to access weaker outdoor bands, and improve MIMO performance


Cons

  • It requires a hotspot, with a line of service
  • Your system will be hard-wired. Mobile phones will be able to connect via Wi-Fi but won’t see better 4G/5G signal.

 

  1. 4G LTE or 5G Signal Booster + Directional Outdoor Antenna

 

A mobile signal booster is a great alternative if you don’t have a hotspot, don’t fancy one or simply cannot afford the monthly charges associated with adding a phone line. You may also just want to have wireless 4G / 5G coverage inside, which a mobile signal booster will give you. 

 

A mobile phone signal booster works by amplifying the signal from outdoors and then rebroadcasting it indoors via wireless. Thus getting you the best data rates. 

Pros

  • Provides wireless coverage for multiple devices
  • Will works with existing phones
  • You don’t need a hotspot or extra phone line
  • Using the directional outdoor antennas can help to improve SINR
  • A booster could enable you to connect to weaker bands

Cons

  • Boosters are SISO (single input, single output) with one antenna outside and one antenna inside. This means you cannot use MIMO with this option, and it decreases speeds by approximately 33% 
  • This option can be more expensive than external antennas

 

What can cause slow 4G / 5G data rates? 

 

If we’re trying our best to improve our 4G and 5G data rates, it would make sense to identify what actually causes rates to be slow. There are five main factors that can affect the 4G LTE / 5G data speeds you experience.

 

  1. The Signal Quality (SINR)

    The quality of signal in 4G / 5G networks is measuring in signal to interference and noise ratio (SINR). If you can increase your SINR, you can dramatically improve your data connection speed. As outlined above, you can improve your SINR by using a directional outdoor antenna, which can also be connected to a signal booster or directly to your 4G / 5G hotspot.

  2. The Number of Connected Bands

    Carrier Aggregation is when your phone (or hotspot) is able to use multiple bands to connect to the tower simultaneously. This means that the more bands you are connected to, the higher your data rates.

  3. The Signal Strength (Reference Signal Received Power)


You might be thinking that signal strength must be the most important factor, but it’s actually not. In 4G and 5G networks the RSRP signal strength certainly does matter, but it’s not the most important thing. Check your RSRP – If it’s already stronger than -100dBm, then having a stronger signal won’t help to increase your data rates. 

 

  1. Congestion

    As you can imagine, the more users there are on the tower, the lower your data rate is going to be. The congestion in the tower will also vary by band. In general, lower frequencies penetrate buildings more than higher frequencies. This means that the higher frequency bands are usually less congested. This means that using an outdoor antenna and connecting it directly to your hotspot or signal booster Ican really help you to access the less-congested bands.

  2. MIMO Support

    Using MIMO means that you can use multiple antennas to increase data rates by about 30%. The majority of mobile phone signal boosters are SISO (Single Input, Single Output) but you could install two systems in parallel to get a MIMO booster. 

  3. Throttling

    If you’re with a Mobile Virtual Network Operator, it means that the service provider does not own the wireless network infrastructure. This means that the main carrier’s network may treat your connection like a second-class citizen and find yourself throttled! Throttling may also occur if you use a lot of data per month. Throttling is how the service providers manage the data they provide – They can de-prioritise certain users and even stop their connection going over a certain speed.

 

Get in touch

If you’re struggling with wired broadband, and not getting the reliable internet connection you need in your rural business or home, then 4G / 5G could be a fantastic option for you.

It can feel like a big jump to give up on your wired broadband connection and opt for 4G – Which is where our Cell Coverage 4G survey comes in.

We can tell you exactly whether 4G broadband would work for you, and which network would be most reliable.

 

Geekabit Cellular Survey Launch

Is your business considering moving premises? Do you need to know whether a property has decent cellular and data coverage?

Here at Geekabit, we are delighted to launch our latest service when it comes to all things wireless. We understand how important it is to maintain a strong connection in any business premises – Whether that be in the office or at home.

Geekabit’s Cellular Survey

We are now offering internal 4G mobile phone coverage surveys. Why might you want one of these? Well, this would be perfect for our clients looking to map the availability of cellular and data coverage within a building. This is useful for when an organisation might be contemplating moving offices and want to ensure mobile phone signal coverage before signing on the dotted line.

It could also be very useful for landlords or estate agents who are selling business and residential properties. The strength of cellular reception is a common question from potential house buyers and tenants. People want to ensure that where they live and/or work will have strong mobile coverage. A cellular survey is the perfect way to prove your property has just this, and on what mobile networks.

Where else might you need to ensure strong, reliable cellular connection?

We can also carry out driven 4G and 5G surveys of external areas. This could be along a road, part of a transport network or throughout leisure facilities.

In this day and age, we take our need for connection wherever we go. We’re not tethered to a desk, and need reliable mobile coverage on the go. Whether it’s a smartphone, tablet or other device – We need to be able to stay connected with a strong and reliable signal.

Our 4G and 5G mobile surveys can tell you how strong the cellular coverage is in a certain area, and which networks would work best.

How do we report the results?

We can provide results, heatmaps and detailed reports measuring the details of phone coverage for 2G, 3G, 4G/LTE and 5G. We can measure the cellular connectivity, data upload and download speeds and the occurrence of dropped and failed calls for all the main mobile network operators.

Long before the pandemic, companies were beginning to realise the importance of cellular coverage – And the last 2 years have only spurred this need on. When it comes to investing in mobile enterprise, it’s vital for organisations to consider the Quality of Service and Quality of Experience their employees get from cellular coverage at work.

Whilst we have always been able to provide mobile phone coverage survey results for a fixed point, we can now provide this matched to geolocation data over a moving area, and on building plans and maps. Additionally, and perhaps most importantly, we can also provide this information for 5G surveys.

The recorded data, provided in graphical and interactive formats, allows companies to drill down into the data and support investment in further mobile technologies.

A word from our Founder

Steve Cross, Founder of Geekabit, comments:

“Mobile phone coverage has continued to increase in importance, with a massive investment throughout the pandemic in mobile working technology. With the great shift in office working already happening, organisations are looking to ensure that mobile phone coverage in potential office locations will be suitable for their workforce. Our new internal cellular survey tool gives clients the opportunity to make sure there will be no issues with mobile phones and tablets when moving buildings or downsizing.”

Want to know more about our 4G and 5G surveys?

For further detail about the data which can be captured, or to discuss a potential project, please email our Wi-Fi experts at [email protected] and someone will be in touch as soon as possible.

What’s the difference between LTE and 5G?

There has been much hype surrounding 5G, relentlessly for years. Now as part of a global rollout we see 5G available in most major cities as well as some towns and more rural areas. Soon enough, we’ll be using 5G just as we use 4G as the standard.

But 5G is still new to the wireless scene. And for some, the question is – Do we really need 5G when we’ve got LTE?

Many of us are still depending on long-term evolution technology. Indeed, there are only a few areas in the UK that don’t have any LTE presence.

What is LTE?

LTE was first launched back in 2009, and whilst it took a number of years to become part of our national connectivity fabric, it is still now a standard for wireless communications.

The reason for its staying power is down to its reliability and stability – Leading many wireless users to wonder if they even need to move over to 5G.

What is the difference between 4G LTE and 5G?

It was necessary to identify LTE as an element of the 4G standard as many telecoms companies weren’t actually able to provide 4G speeds due to infrastructure. The regulator ITU-R (International Telegraph Union Radiocommunication) established LTE as a standard to show the progress being made towards true 4G.

The download/upload speeds of a particular standard can be different in theory and in practise. Whilst in theory, 4G LTE can achieve data transfer speeds of up to 150Mbps for downloading content and 50Mbps for upload speeds, in practise is is more likely to be 20Mbps and 10Mbps respectively.

These figures will vary depending on:

  • Location
  • Network deployment
  • Traffic

How does 5G compare to 4G LTE in terms of download speeds?

5G connectivity offers theoretical download speeds of up to 10Gbps. A pretty staggering difference! Of course in practise, it may not reach this, but even real-world examples seem to still be dwarfing the speeds of 4G LTE.

Why does 5G reach higher speeds?

5G uses a different spectrum to 4G – Called mmWave which are high-frequency bands. The higher speeds are mostly reached because these high frequency bands support more bandwidth than the ones that LTE uses. This means that more data can be transferred at once.

5G can also use frequencies above low-band but lower than 6GHz. Despite these not supporting the highest possible speeds, they will still outclass 4G LTE. It’s worth noting that 5G coverage could be further expanded by using connectivity below 6GHz, especially as walls and surfaces can block mmWave frequencies.

Basically, 5G uses a different spectrum to 4G LTE and thus:

  • Delivers stronger, faster connections
  • Has a higher capacity for traffic
  • Has low latency (1ms)

Sounds too good to be true doesn’t it! It’s worth remembering that the rollout of 5G is still in its infancy, and therefore coverage is still limited. Before the big networks like EE, Three and Vodafone can deliver the top scope of what 5G has to offer, more work needs to be done.

So should we be choosing LTE or 5G?

As with most techy things, there are lots of factors, such as:

  • Your budget
  • Where you’re based
  • What your connectivity needs are – Personal or business

The more countries adopt and expand their 5G infrastructure, the more 5G-friendly hardware we will start to see. The best way to know whether to choose LTE or 5G is seeing what is on the market and whether it meets your needs.

You may find that some of the 5G devices available don’t have a 4G alternative. You may also find that they are rather on the pricey side! So definitely shop around.

Of course, the more 5G devices we see on the market, the more we will see the prices start to come down. So the time for adopting 5G over LTE may not be quite yet. Patience could also serve you more of the promises 5G has to offer – The more the 5G coverage continues to expand, the higher the speeds and the more consistent the connection to mmWave networks.

Since 2019, we’ve seen prices start to come down as competition in the market starts to heat up, but 5G is still costly. If you have a big budget then you could just go for it now, but we feel like the overall coverage, packages and prices will continue to rapidly improve. We’re inclined to hold out a bit longer and stick to LTE for the time being.

What about 5G for business?

If your business relies on heavily on connected sensors and other similar IoT networks then 5G may be the network you’ve been waiting for. The bandwidth and low latency that 5G could bring to your business cannot be easily ignored.

Think driverless cars navigation and smart sensors – 5G could well be the communications technology that will enable some great and creative deployments.

What are the health concerns associated with 5G?

With 5G comes questions about whether it could harm our health. Do you remember when mobile phones were beginning to emerge into mainstream use and there was much anxiety about what the radio waves were doing to our health? Mobile telephone has never been without concerns, but 5G seems to have evoked more than its fair share of health worries.

The installation of 5G masts have been banned in multiple UK locations. And it’s not just parts of the UK that are opposed to 5G – Back in 2017 180 scientists from 36 different countries made a public appea to the EU to pause their plans of 5G expansion whilst investigations were carried out looking at the long-term effects on human health.

Whilst both 4G and 5G use radio waves, 5G uses higher frequency waves. It’s these high frequency waves that provide better network capacity and speed.

Studies that have looked into any potential health risks from 5G haven’t seemed to identify any specific danger from 5G.

What is the future for LTE and 5G?

With the rise of 5G comes potentially society-changing connectivity – Like self-driving cars.

But technological advances can be slow if not steady. Whilst there is definitely potential for 5G to take over, it could take considerable time for 5G-enabled devices to really take hold of the market. Even from the likes of Apple!

There is still space for 4G LTE in our networks, and whilst it may be 5G’s predecessor, it’s not going anywhere just yet.

Research from Ericsson suggests that the dominant cellular network technology seen in most regions globally is still 4G LTE. 78% of mobile subscriptions in Western Europe in fact! Just because the 5G rollout is well underway, doesn’t mean that everyone will immediately jump ship and drop 4G LTE. It’s expected that 4G LTE will still be the dominant network even 5 years from now.

By 2026 Western Europe is predicted to be using 5G in 69% of all mobile subscriptions. However, Ericssons findings suggest that even as 5G usage surges, 4G LTE won’t automatically decline. It’s even predicted that 4G LTE availability will grow, with global coverage of 95% by 2026, with 5G only seeing 60% in those 5 years.

There is no denying that 5G is the future for telecoms. But by the time we are all accustomed to using it, 6G might well be on the way! Despite 5G becoming more prevalent as time passes, we still think there’s no need to be abandoning 4G just yet.