Starlink Latency – Is It Fast Enough to Hire for Events?

Network providers are constantly striving to improve performance to their service and Starlink engineering teams are no different. Starlink’s focus and goal is to deliver a service where the median latency is a stable 20ms with minimal packet loss. 

With customers and users across the globe, Starlink has managed to meaningfully reduce the median and worst-case latency over the past month. As an example, users in the US benefited from a reduction of 30% in median latency, taking it from 48.5ms to 22ms during peak times. Worst-case latency during peak times also dropped, this time by 60% from over 150ms to less than 65ms. 

Customers outside of the US have also enjoyed reduced median latency by up to 25% and worst-case latency by up to 35%. 

What is Latency?

Already we’ve talked a lot about latency – That’s what this article is about! Here’s a brief explanation of what latency actually is. 

Latency is generally measured in milliseconds, and refers to the amount of time it takes for a packet to be sent from your Starlink router to the internet and for the response to be received. This can also be referred to as RTT or “round-trip time.” 

For someone’s perceived experience of using the internet, latency is one of the most important factors. It can significantly affect things like:

  • The speed in which web pages load
  • How ‘real life’ audio and video calls feel
  • Responsiveness of online gaming

If you’re wondering actually how important latency is when it comes a user experience of using the internet, here’s an example. During testing, increasing the bandwidth beyond 10 Mbps didn’t increase the speed of which a web-page loaded, yet those that reduced latency saw much quicker load times. 

How Does Starlink Measure Latency?

Starlink’s latency is measured by collecting anonymous measurements from millions of Starlink routers. This measurement is taken every 15 seconds. The median and worst-case latencies are then calculated by taking the average of these 15 second latency measurements. 

Median Latency

The median (50th percentile or p50) refers to the point where half of the latency measurements are below that number and the other half are above. 

Worst-Case Latency

The worst-case latency, or 99th percentile, is defined as the place where 99% of measurements are better than a certain point. 

When Are These Measurements Taken?

Measurements are taken from all points in time so all data can be analysed, but Starlink do specifically look at how they are performing during peak times (between 6pm and 9pm). This is when most people are using a Starlink connection and the network is under the most load. 

What Affects Latency When Using a Starlink Connection?

There are a few factors that can affect latency in any network. For Starlink, the biggest things affecting latency are: 

  • Physical speed-of-light propagation from the user to the satellite and back to the ground.

    This goes back to the RTT (round trip time) we referred to earlier. Each part of the trip (there and then back) takes about 1.8 to 3.6 ms, with a total RTT of under 10 ms (usually).

    If traffic flows over laser links instead of directly to the ground, higher incidences of latency could occur. This would be as a result of congestion mitigation, lack of satellite to ground paths, and other factors.

    Laser connectivity is actually essential for connecting the most remote locations on Earth as well as for routing around congestion in the network. Starlink are however striving to make sure that latency sensitive traffic can flow over the shortest path possible. 
  • Ground latency from the gateway sites to the internet connection point driven by ground network layout.

    During 2024 the US will see the introduction of PoPs or Points of Presence, where Starlink has added 6 internet connect locations. They are optimising gateway locations and planning algorithms to ensure that traffic can land as close to its destination point as possible.

    Starlink continue to ensure that users are allocated to optimal internet connection locations, so that all users get the lowest latency possible route to the internet. 
  • Fronthaul (the radio links between the satellite and user) scheduling latency driven by the network topology and the number of users served by a given beam from a satellite.

    Over the past few months, Starlink’s major focus has been on optimising fronthaul scheduling latency, even though this is an inherent part of shared wireless systems. 
  • Non-physical limitations in the system.

    This would include unneeded processing delays, unoptimised buffers, or unnecessary packet drops that force retries.

    Buffers across the Starlink network have been right sized to reduce bufferbloat, and queueing algorithms have been improved to increase capacity on their gateway links from the ground to satellites. 


Starlink Wi-Fi latency has been improved, with the addition of active queue management (fq_codel) to the Starlink Wi-Fi router. What does this mean in real life? Well, with active queue management enabled, if one person on your Wi-Fi is downloading a big file, and another is playing a game, the queue management will make sure that game latency will not be affected by the download. 

How Are Starlink Striving to Reach the Goal of 20ms Latency?

Starlink has been monitoring and gaining metrics across the network to measure latency on every subsystem down to the microsecond over the past few months. They have rigorously tuned their algorithms to prefer paths with lower latency, no matter how small the difference and to remove any and all sources of unnecessary and non-physical latency. 

This is just a selection of some of the most impactful changes Starlink has made and continues to make. 

Since the beginning of the year, teams have deployed and tested 193 different satellite software builds, 75 gateway software builds, 222 Starlink software builds, and 57 Wi-Fi software builds. 

Over 2.6 million people around the world have chosen Starlink as their internet provider via satellite broadband. These customers can expect latency to continue to improve over the coming weeks and months as Starlink prioritises software changes, builds additional ground infrastructure, and launches more satellites. 

Future updates from Starlink are expected to include performance stats and more network goals as they work to improve the user experience. 

How Can I Check Starlink Latency For My Location? 

Be sure to check the latest latency statistics for your region at starlink.com/map.

Is Starlink Fast Enough to Hire for Events?

Absolutely! Here at Geekabit, we are delighted to be able to offer fast, reliable Wi-Fi via Starlink for a range of events and purposes across London and parts of the South of England. 

We’ve diligently tested what we can offer via Starlink when it comes to temporary Wi-Fi for outdoor events. Some of our test events included supporting policing events in London, hybrid meetings, rural wedding fairs and a busy city fireworks fundraising event. 

For more information on our Starlink hire service, please visit our blog. Fast Wi-Fi hire is available for events with Starlink hire from Geekabit. Feel free to contact us to find out more. 

Teltonika Network Setup – What is RSSI and RSRP? 

Enable yourself to get better understanding and control of your Teltonika networking solution’s performance with wireless connection support display RSSI and RSRP signal strength. 

Familiarising yourself with RSSI and RSRP metrics wireless network support will help to enhance your Teltonika Networks next steps. 

Wireless Networks are the preferred choice for IoT connectivity

When it comes to IoT (internet of things) applications, wired connections once held dominance. But it is becoming increasingly evident that the preferred choice for IoT connectivity is wireless networking. 

The wireless connectivity market is expected to continue to grow at a compound annual growth rate of 12.8% in the next 3 years, solidifying the trend of networking solutions becoming increasingly dependent on Wi-Fi or mobile networks. 

Due to the versatility and convenience offered by wireless connectivity, this doesn’t come as much of a surprise. 

Without the limitations of wiring, network devices can be configured, monitored and managed remotely – Even if they’re in a different city, country or continent. 

The benefits of using a wireless connection are indisputable.

What are the primary connectivity options? 

There are 2 primary choices when it comes to wireless connectivity: Wi-Fi and mobile technology. 

Wi-Fi 

  • Operates on the IEEE 802.11 standard
  • Supports multiple protocols including 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac (determining the connection’s speed and range)

Mobile Technologies

  • Have evolved from 3G to 4G to 5G
  • Each defines the connection’s speed and capacity available to users and end devices

RSSI and RSRP

Whether your network device operates on Wi-Fi or mobile technologies, if you’re checking out your network then you’ll likely come across RSSI and RSRP metrics. These metrics are vital for displaying the strength and power of your connection. 

What is RSSI, what does it do and how is it measured? 

  • RSSI stands for Received Signal Strength Indicator. 
  • At the moment radio frequency power and quality reaches the receiver, it’s measured by RSSI. For example, a network device or antenna. 
  • RSSI can be used to gauge the strength of the signal in any wireless system, it’s not exclusive to any one type of wireless technology. 
  • Whether you’re using Wi-Fi or mobile technologies, RSSI can provide signal strength data across different types of radio frequency communications. 
  • This means that RSSI can be a good indicator of whether your network devices have robust connectivity.
  • RSSI signal strength is measured in negative values, with stronger, higher quality signal values being closest to zero.
  • NOTE: RSSI values are not standardised across industries, so bear this in mind when interpreting network data for devices manufactured by different companies. 

What is RSRP? 

  • RSRP stands for Reference Signal Received Power and is measured in negative values.
  • RSRP is particularly relevant for mobile technology network solutions like 4G and 5G.
  • It is a type of RSSI measurement, but used to measure the power of mobile signals spread over full bandwidth and narrowband.
  • RSRP measurements can help you to see your network’s overall signal coverage and capacity across all frequencies used for your networking solutions by measuring across the full bandwidth.
  • The quality of your connection in specific frequency ranges can be assessed by measuring RSRP over a narrowband. This can be used to troubleshoot specific issues that could affect signal quality as well as optimising network performance.
  • By using the RSRP signal strength, you can determine a more precise measurement of the cellular connectivity that your network receiver obtains. Having this information can enable you to make informed decision about your network infrastructure as well as Quality of Service Assessments and further improvements.
  • NOTE: Just as with RSSI, the RSRP signal strength can differ by manufacturer.

Your Teltonika Network

Both RSSI and RSRP signal strength indicators are displayed for Teltonika Network devices enabled with Wi-Fi or mobile connectivity devices.

The display of these metrics can be accessed via RutOS. The latest 7.06 version of RutOS has enhanced data visualisation capabilities for mobile connections.

For help with your Teltonika Network, get in touch with our Wi-Fi experts today. Our professional wireless network engineers can help with both Wi-Fi networks and mobile connectivity. 

We can also help with alternative networks other than Teltonika. 

Why Wi-Fi Almost Didn’t Connect At All

It’s hard to imagine a time or place when you couldn’t quickly check your emails or have a scroll through Instagram. Isn’t it the most frustrating thing when you hit a Wi-Fi deadspot? No connection, nothing, no matter how many times you reload the page. We are so accustomed to working remotely (I’m actually looking out at the solent whilst typing this!) and taking the internet with you wherever you go, it’s very difficult to contemplate a life without Wi-Fi and mobile connectivity.  

Did you know that Wi-Fi very nearly didn’t happen in the first place? Wi-Fi almost hit its very own deadspot – And wouldn’t that have changed our lives as we know it! So how did Wi-Fi come about?

When was Wi-Fi officially launched?

On the 25th September 1999, coming up to 25 years ago, Wi-Fi was officially launched. If you think about the fuss that’s made over a new product launch from Apple, then you might have expected the launch of Wi-Fi itself to be a rather flashy affair. 

In reality, it was a bit Big Bang Theory-esque – A convention centre in Atlanta housing 8 technophiles ready to open their jackets to reveal polo shirts emblazoned with the made-up word Wi-Fi. And all in front of a crowd of just 60 people. 

Some of the biggest tech companies, and some smaller ones too, backed the launch enthusiastically. Even the likes of Apple, Dell and Nokia could never have imagined that they were backing such a huge global phenomenon with incredible economic, social and cultural impact across the world. 

It was the summer of ‘99

Think back to the summer of 1999, if you can. The working world was mostly using wired networks via Ethernet cable. LAN’s (Local Area Networks) connected desktop computers at a rate of 10 Mbps. 

Meanwhile, those trying to send emails from home did so to the sound of a modem trying to connect to another modem via repurposed telephone infrastructure. Dial-up internet and 56 Kbps dial up modems clanked and clanged their way online. Arguments were had over who needed to use the computer and who needed to use the telephone. 

There were products for WLAN’s (Wireless Local Area Networks) but these were predominantly just for businesses. The IEEE (Institute of Electrical and Electronics Engineers) official wireless standard specification for these wireless products was 802.11. Not only were these products expensive, they were also 5 times slower than their wired equivalent. 

Despite there being a specified wireless standard, this unfortunately didn’t mean that one standards compliant wireless product would be compatible with another. This was largely due to the fact that there were different ways of interpreting the specification. 

These weaknesses meant that some companies looked elsewhere and chose to support other rival technology alliances – Each with their own aim of becoming the actual standard. 

Wi-Fi’s rival – HomeRF

One of these rival specifications was developed by a consortium of other technology giants – Compaq, Hewlett-Packard, IBM, Intel and Microsoft. Their WLAN ‘HomeRF’ was aimed at consumers (rather than businesses) and was backed by over 80 other companies. In comparison to the other standard, the HomeRF products were not only cheaper but could also communicate with each other. 

With a name like HomeRF (short for Home Radio Frequency) it arguably had a catchier name than IEEE 802.11. They didn’t just have their eyes on the consumer market – They also had big plans for expansion and higher speeds for the business market. 

Despite all of this, the second generation of the IEEE standard, 802.11b was heading steadily for its final approval at the end of September. By the end of the year, there were products due to ship from company 3Com (later acquired by HP along with Compaq). Their products were based on the newer, faster standard and set for release before 1999 ended. 

At the time, networking firm 3Com formed WECA (Wireless Ethernet Compatibility Alliance) bringing together 5 strong advocates for IEEE. Their aim was to make sure that any products using the pending second generation standard would all be compatible with each other. 

Originally tipped to be named ‘FlankSpeed’, connectivity as we know it today was trademarked as Wi-Fi. There began the establishment of the rules by which wireless products could be deemed ‘Wi-Fi Certified.’

What if Wi-Fi had not won out against HomeRF?

Wi-Fi won the wireless standard race, but what if HomeRF had in fact taken the lead? There are ways that all might not have worked out as it has. 

If the second generation standard 802.11b had been delayed, then HomeRF may have been able to sneak ahead. It was only due to a compromise between WLAN industry pioneers (and foes) Lucent Technologies and Harris Semiconductor that meant there was no delay. 

What if FlankSpeed was only available at work?

So what if WECA had decided only to focus on business connectivity? That was a discussed possibility. ‘Go anywhere’ connectivity almost wasn’t on the table. And what if ‘FlankSpeed’ had been chosen over ‘Wi-Fi’? 

A big chunk of today’s workforce rely on being able to bring work home with them. And not just home – What about coffee shops, airports, on the daily commute sitting on the train, the beach even? Nowadays we tend to take work with us wherever we go. 

Had we been using FlankSpeed at the office and HomeRF at home, this would have made things very difficult for anyone working from home. And you can forget about coffee-shop-working and catching up on emails waiting for a plane – It’s possible neither of these public access options would exist. Zones that were not home or the office would have been a no-go (or NoHO (Not Home, Not Office) for working online. Spaces that were neither office nor home would have been a connectivity no man’s land. 

And if you’re wondering about FlankSpeed and Smartphones – That would have been a no as well. The mobile world of online connectivity disappears into the mist, out of grasp. Can you imagine? No, we can’t either. 

Would it have been beneficial to have more than just one wireless standard? 

The benefits of having a singular focus on just the one standard meant that there was more scope for innovation and cost reduction. 

Even if FlankSpeed or HomeRF had gone forth alongside Wi-Fi, it couldn’t have ever become as cheap to run or prevalent and globally penetrating as Wi-Fi. 

Having a universal standard means that retail stores, public spaces and anywhere where we would now expect to be able to connect, could roll it out uninhibited. Had this not been the case, the ability to stream video whilst sipping a coffee or connect to emails whilst sitting on the train may not be available. 

Thinking on a global level, those living in emerging market countries like Nigeria, rely on free Wi-Fi hotspots to be able to connect to the rest of the world. Remote islands like the Bahamas also rely on Wi-Fi to get support following adverse weather conditions like hurricanes. In this way, Wi-Fi provides critical connections all over the world.  

HomeRF folded in 2003 – So how did Wi-Fi succeed so quickly? 

As with all well-laid plans, it’s all in the preparation and timing. With the announcement of the name Wi-Fi and the promise of certified interoperability from WECA, companies investing in this new wireless standard had the assurance that their products would all work together. 

In 2000, 86% of Wi-Fi devices were used for business. Wireless connection in businesses was big business in itself, with chipmakers and PC companies quickly hopping off the fence to support and join Wi-Fi. This led tech giants Microsoft and Intel to jump ship from HomeRF to Wi-Fi. Wireless for business soared in popularity ahead of in the home, which gave Wi-Fi chip volume a boost. This in turn led to closing the cost gap between that and HomeRF, leading it to fold in 2003. 

Since then, over the past 2 decades the Wi-Fi Alliance and IEEE have worked together to represent, guide and oversee Wi-Fi and its subsequent standards. 

The IEEE committee continues to roll-out new standards, and the WI-Fi Alliance makes sure that certified products can communicate with each other. 

So the next time you hit a Wi-Fi deadspot, or find that the Wi-Fi is down in your favourite coffee shop – Stop and breathe. Count your blessings that you can take your work with you wherever you go (mostly) and that you can largely connect via Wi-Fi wherever you need it. 

International Broadband Scorecard Comparison Scrapped by Ofcom UK

Do you wonder how the UK fares against other European countries in regards to broadband and mobile connectivity? Well, you might have to wonder a bit more. 

Ofcom, the telecoms regulator, carries out various reports on performance, looking at things like UK broadband and mobile connectivity compared with other major EU economies like France, Germany, Spain, Italy etc. 

However, it seems that Ofcom have covertly scrapped their annual international comparison despite having been publishing it since back in 2013 when they began the International Broadband Scorecard. 

The report examined various connectivity benchmarks within fixed and mobile broadband performances across different countries, such as:

  • Network availability
  • Take-up
  • Use 
  • Prices  

This then enabled them to measure and compare them with the relative performance of the UK. 

Where did the data come from?

Ofcom normally relied on Omdia-Informa Tech, a third party provider, to supply the data for the non-UK countries included in the report. 

However, as this data is available from Omdia-Informa Tech (as well as other similar telecoms research companies) to anyone who is prepared to pay a fee, Ofcom decided that them stopping their publication of the data would not hinder stakeholders and the like from being able to benchmark the UK broadband offering against the international market themselves.

Scrapping of International Broadband Scorecard a Cost-Cutting Measure?

It would seem to us that this move to scrap the report is likely a cost-cutting measure. This is unfortunate as the reporting was a useful point of comparison to see how the UK was doing in regards to broadband and mobile connectivity on an annual basis when compared without our European counterparts. 

Despite the fact that Ofcom rarely promotes their reports which meant the information they provided was often missed, they have provided some handy and relevant information in past years. 

Can I get the Broadband and Mobile Connectivity Data Somewhere Else?

Thankfully, yes! There is an annual report published from the European Commission that goes some way to compare the UK with EU countries on Broadband and Mobile connectivity (you can find the latest one here). 

If you want to check out the latest summary from the final Scorecard from Ofcom for 2023 (with data from the latter part of 2022) the interactive report is online here

Top UK Mobile Networks for H2 2023 Revealed by RootMetrics Benchmark

How did UK mobile networks perform in the second half of 2023 when it comes to 4G, 5G and mobile broadband?

RootMetrics (now an Ookla company), a mobile analyst firm, has not long published their latest benchmark study of UK mobile networks (4G and 5G) and mobile broadband performance for H2 2023. 

RootMetrics offers scientifically collected and crowdsourced mobile network performance information to consumers and the industry. The firm captures user information by testing network performance when consumers are using their mobile phone for voice or data communications. 

Results of the latest biannual benchmarking report which once again see EE (BT) come out on top against their UK network rivals at Vodafone, Three UK and O2 (VMO2). 

Which UK mobile network is the best for 4G/5G?

When it comes to 5G performance, the picture painted by this recent report isn’t so clear-cut.

This latest study used data from a 5G-enabled, latest model of Samsung smartphone (the actual model was not disclosed in the report). It was purchased from operator stores and tested for both 4G and 5G performance across all 4 primary UK operators within 16 of the most populated UK cities. 

In summary, the study consisted of:

  • 1 latest model Samsung smartphone
  • 4 primary UK mobile operators
  • 16 UK cities
  • 634,942 tests across hundreds of locations
  • 788 locations were indoor
  • 24,179 miles driven during both the day and night

Results were divided into the following categories:

  • Network reliability
  • Speed
  • Data
  • Call and text quality

Scores were given out of 100 (100 being the highest score). As you can see from the data representation from RootMetrics below, EE came out on top across all categories, while VMO2 were found at the bottom of most. 

Interestingly, every one of the 4 primary UK operators saw a decrease in their overall scores when compared to the last RootMetrics report 6 months prior. 

The Overall Scores for H2 2023 (vs H1 2023), in order of best to worst, are:

1. EE – 94.2 (down from 95.9)
2. Vodafone – 90.1 (down from 92)
3. Three UK – 89.3 (down from 90.2)
4. O2 – 86.4 (down from 86.7)

So which is the best UK mobile network? When we look at the average (median) UK download speeds for both 4G and 5G networks, then the strongest data speeds were delivered by EE (68.6Mbps, which was up from 65.1Mbps in the last report).

Vodafone also saw an increase in data speeds, increasing to 34.5Mbps (from 29.4Mbps). Despite O2 improving their data speed score from 15.5Mbps to 19.9Mbps, they still scored the bottom of the 4 providers. Just behind Vodafone to take 3rd place, Three UK fell slightly to 32.3Mbps (down from 34.7Mbps). 

How is 5G performing on UK networks so far?

However, when we look purely at 5G networks, we see a bit of a different picture emerge when compared to the previous report for the first half of 2023. 

Whereas H1 2023 saw Three UK as the fastest median 5G download performance, that award now goes to EE. O2 were unfortunately at the bottom with a score well below the other 3 primary UK networks. The scores for median download speeds for 5G from the H2 2023 report were:

  1. EE – 174.1 Mbps
  2. Three – 165.7 Mbps
  3. Vodafone – 158.3 Mbps
  4. O2 – 68.7 Mbps

What is the availability of 5G on UK mobile network providers? 

As well as 5G speeds, the availability of 5G across UK networks was also tested. 

All 4 of the UK mobile network providers had 5G availability of over 52% during this latest UK wide testing. 

The UK providers in order of 5G availability are:

  1. Three – 57.6%
  2. O2 – 54.5%
  3. EE – 52.3%
  4. Vodafone – 41.9%

You can find more data below for particular regions as well as the most improved cities. 

What can we take away from this report on 5G speed and availability on UK mobile network operators?

So it would seem that even though EE has the fastest 5G speeds, that 5G connection is less available than that of its competitors Three and O2. 

Despite coming second place in terms of speed, Three weren’t too far behind EE and are also slightly more available. 

O2 might have decent 5G availability, but the speed of that connection is pretty dire according to this latest report. 

In terms of 5G speed, Vodafone aren’t too far behind rivals EE and Three, however they are at the bottom of the pile with the lowest 5G availability. 

What more would we like to know about 4G/5G connections across the UK mobile networks? 

If you’d like to read more on this and see further data, head to the full report from RootMetrics UK Mobile Performance Review 2H 2023 here

Whilst this review does shine a light on 5G speeds across the UK and how UK mobile networks are performing, it does only give select information. 

It would be interesting to also see how the networks perform when it comes to upload speeds and latency using 4G/5G connections. 

As you can see from the review, there seems to be a strong focus on urban areas across the bigger cities in the UK. Here at Geekabit we talk a lot about the struggles of rural businesses and more remote locations that still need strong 4G/5G mobile broadband connections. Some more data on the performance of UK mobile networks in these areas would be beneficial and would give a clearer picture of 4G/5G availability and speed across the UK as a whole. 

Connections Boosted by VMO2 5G Drones for Search and Rescue Missions

Here at Geekabit we talk a lot about the problems that rural areas face when it comes to connectivity – Whether it’s mobile or broadband. 

Mostly we’re talking about businesses and homes that struggle with more traditional forms of broadband internet connectivity as well as mobile broadband options. 

But what about organisations that rely on connectivity outside the normal 4 walls of business premises?

For Search and Rescue teams, staying connected couldn’t be more vital. Yet, they’re often plunged into rural and remote locations trying to find someone missing and potentially hurt. 

So how can we make sure that these Search and Rescue teams stay connected with their base and are able to utilise location data? 

Virgin Media O2 (VMO2) has come up with just the solution. They’ve recently developed a 5G-connected drone that is specifically designed to bolster the communication that is so vital to Search and Rescue teams. 

Who is trialling this 5G drone for Search and Rescue teams? 

The first Search and Rescue team to trial VMO2’s 5G drone is Warwickshire Search and Rescue team.

As we said above, communication in remote and vast terrains is absolutely vital but can be a challenge for Search and Rescue teams. As the work of these teams is so time critical, it’s essential that their effectiveness is unhindered by communication and connectivity problems. 

As a Lowland Rescue Unit, the Warwickshire Search and Rescue team play a vital role in locating vulnerable missing persons alongside the police. 

With a 45% increase in callouts between 2020 and 2022, the demand for their services continues to surge with 65 callouts in 2023 – That’s more than 1 per week. 

How does VMO2’s 5G drone work?

The 5G Technical Trials Team over at VMO2 saw this need for critical connectivity and devised a portable solution that uses a network of low earth orbit (LEO) satellites. The portability and compactness of the tech means that it’s small enough to be integrated into a drone. Ideal for vast, remote spaces. 

This easy-to-deploy drone acts like a flying mobile phone mast, enabling Search and Rescue teams to stay connected via seamless 5G connectivity regardless of their location.

What do VMO2 have to say?

Here at Geekabit we love to see how innovative thinking and technological advancements combine to create fresh ideas and impactful solutions to a whole range of problems. 

Head of Technical Trials for Virgin Media O2, David Owens, says:

“This project is a further example of how fresh-thinking and 5G technologies can be combined to provide real societal benefits.

“The solution has the potential to transform how search and rescue teams operate and respond to life-threatening situations, enabling them to make faster and more decisive decisions. We’re enormously proud that our connectivity will be able to help these teams to save lives.”

What do Warwickshire Search and Rescue make of the 5G drone?

Trustee and Search Technician at Warwickshire Search and Rescue, Steve Brown says: 

“With more and more callouts each year, this drone with mobile connectivity is a powerful tool for our team to understand and assess a situation immediately, saving crucial time in life-threatening situations.

“It means we will always be connected, ensuring seamless communication and efficient coordination throughout our missions. As a result of this, we will connect the unreachable, save lives, and inspire a new era of technological possibilities.”

There’s no doubt that this innovative use of 5G mobile connectivity is a fantastic example of how technology can be used in even the most hard-to-reach places. 

In the UK, someone is reported missing every 90 seconds. The more swiftly that person can be located, the better the outcome. For those that have gone missing in a remote area, a Search and Rescue team that can stay reliably connected will be a huge advantage. 

As Portfolio Holder for Fire & Rescue and Community Safety at Warwickshire County Council, Councillor Andy Crump said: 

“The Warwickshire Search and Rescue team do such vital work for our local community by assisting the police in searching for missing people. 

“This new solution from Virgin Media O2 will help the team on these missions and ultimately save many lives. It is further evidence of the positive impact improved connectivity can have upon our society.”

We’re looking forward to seeing how 5G drones and satellite broadband technology can be accessed in more remote areas and rural locations.

Will BT EE Boost UK Mobile and Broadband Services with Starlink? 

It has been reported that National telecoms giant BT (EE) has been in talks regarding plans to harness SpaceX’s ultrafast low-latency broadband via their Starlink LEO (low earth orbit) satellite constellation. This could help improve internet as well as mobile connectivity to those in more remote, rural areas.  

Have BT Used Satellite Technology Before?

This isn’t the first time BT has helped deliver digital connectivity by channelling satellite technology. One example is the SaT5G (Satellite and Terrestrial /Network for 5G) project, supporting the development of solutions for integrating a standard commercially available 5G core network into a live satellite network.

BT is also running trials for rural broadband and mobile connectivity in the UK with OneWeb (rivals of Starlink) backed by the government. 

Recent reports revealed that BT is testing the Starlink system at its Adastral Park research centre near Ipswich. This is just one of the ways they are attempting to solve the continuing issue of getting reliable internet to those in hard to reach locations in the most rural, remote parts of the UK. Of course, consumers can already just sign up to Starlink’s satellite broadband service.

What is Starlink?

Here is some basic information if you’re new to everything Starlink satellite broadband. 

Starlink LEO Satellites

At the moment, Starlink have a network of 5,289 LEO satellites. They orbit the Earth at an altitude of around 500km. 

SpaceX Starlink has approval to expand this number to approximately 7,500 satellites by the end of 2027. 

Cost of Starlink Satellite Broadband

For UK customers costs start at £75 per month. There is an additional cost for the £449 regular home kit which includes a standard dish, router and relevant kit. There is also a shipping fee of £20 on the Standard package. 

Starlink Broadband Speed

The Standard Starlink broadband package promises download speeds of between 25 and 100 Mbps and upload speeds of 5-10 Mbps. It also offers latency times of 25-50 ms. 

Starlink’s New Direct to Cell Mobile Roaming Service

On top of that, Starlink is also in the process of launching its new global Direct to Cell mobile roaming service for use with regular unmodified Smartphones, which would require support from both a mobile network and Ofcom in order to launch in the UK. EE would clearly be a good fit for something like this, given the BT Group’s wider experience in the field. We wrote all about this last week, you can read it here

How Many Customers Do Starlink Have in the UK?

1.83% of Starlink’s current customers are based in the UK. Starlink has 2.3 million customers worldwide, with 42,000 of them residing in the UK. This is up from 13,000 UK based customers last year. 

Will BT EE Utilise Starlink Satellite Broadband for Business Customers?

The report that came out last weekend suggests that the current talks going on between BT EE and Starlink are looking at business broadband solutions and providing mobile connectivity to remote sites such as oil rigs out at sea.

It doesn’t look like BT are interested in just reselling Starlink’s broadband product, but instead are looking at it as a viable way to complement their own terrestrial connectivity services. 

When Will Satellite Connectivity Support Broadband and Mobile Services?

As things currently stand, we don’t know when we see satellite connectivity become fully fledged products that can be a viable solution to supporting broadband and mobile connectivity in rural and remote areas. 

The satellite solutions mentioned in this article are currently still in the early Proof of Concept trial stages. Having said that, although there is no guarantee that BT will use Starlink satellite broadband to bolster their broadband and mobile customers in more rural / remote areas, particularly businesses, it’s certainly exciting to know that discussions are taking place that this could be a possible solution in the future. 

Hire Starlink Satellite Broadband with Geekabit

We’ll be keeping a close eye on how this situation develops. 

As a company committed to helping businesses stay connected with reliable broadband – Using traditional methods as well as mobile and satellite options –  we are excited at the prospect of Starlink satellite broadband going further to help businesses in rural areas. 

If you are interested in Satellite broadband as an internet service provider option for your business or event, then get in touch with our Wi-Fi Experts today. We have Starlink satellite broadband kit ready to hire! Contact us here.  

Which Is The Best Mobile Network for 4G/5G in the UK 2023?

Opensignal, the leading global provider of independent insight and data into network experience and market performance, last week published their latest report on Mobile Network Experience for the second half of this calendar year.

Their reports and insights are the independent global standard for understanding the true state of the world’s communications networks based on measurements of real user experience. 

The Mobile Network Experience Report is based on crowdsourced data (the process of obtaining data from a large number of sources in order to generate insights). It was gathered from users on hundreds of thousands of devices, including smartphones. 

Data was collected between the 1st June and the 29th August 2023. This latest report looks at mobile broadband services (4G and 5G) from the 4 primary UK mobile operators and how they compared across various categories. The operators are:

  • EE
  • Vodafone
  • O2
  • Three UK

Which network delivered the best mobile broadband performance? 

Overall, the best networks seemed to be EE and Three UK. 

In this study, it mostly looked at the combined performance of 3G, 4G and 5G networks. However, it did look at some 5G connections individually. 

In 1st Place

The most awards went to EE. They won 7 of the categories, and came joint top on 3 others. This is slightly less than last year, when they won 8 categories and came joint top in 5. 

In 2nd Place 

Three UK took 2nd place, which matches their top performance in other studies for availability and download and upload speeds on 5G. 

They also came joint top for 5G Video Experience and 5G Live Video Experience. 

The Winners by Category

You can see which of the various categories were won by which network in the infographic below. 

You can see that O2 were the bottom of the pile with just one award, which was joint with all 3 of the other networks for 5G Availability. 

Vodafone had just one award (for Voice App Experience) along with 4 joint winnings for Video Experience, 5G Video Experience, 5G Live Video Experience and 5G Availability. 

Opensignal-uk-mobileawards-H2-2023

With thanks to Opensignal for the graphic detailing the categories and winners. 

Download Speed Experience – All Mobile Connections

NetworkDownload Speed H2 (Mbps)Download Speed H1 (Mbps)
EE4047.7
Three UK34.535.4
Vodafone2725
O220.919.3

Download Speeds – 5G

NetworkDownload Speed H2 (Mbps)Download Speed H1 (Mbps)
Three UK205.5237.7
Vodafone114.3100.6
EE99.5122.3
O27775

Upload Speed Experience – All Mobile Connections

NetworkUpload Speed H2 (Mbps)Upload Speed H1 (Mbps)
EE9.39.8
Vodafone88.2
Three UK6.36.2
O25.15.1

Upload Speeds – 5G

NetworkUpload Speed H2 (Mbps)Upload Speed H1 (Mbps)
Three UK17.517.3
EE15.916.9
Vodafone14.914.9
O29.89.8

UK Availability % – All Mobile Connections

Network% UK Availability H2% UK Availability H1
Three UK99.199
EE98.598.3
Vodafone97.597.3
O297.397

UK Availability % – 5G

Network% UK Availability H2% UK Availability H1
EE10.69.8
Three UK10.310.6
O210.18
Vodafone109.7

Summary

You’ll see from the data above that performance leaders EE and Three UK have actually lost some of their download speed in comparison with the first half of the year (H1). For EE, this meant a drop from 2nd to 3rd place in the 5G download performance category.

The availability of 5G performance (measured using the % of time spent on a 5G connection) improved across all networks with O2 delivering the biggest overall increase despite being near the bottom for the majority of categories. 

Unfortunately, it would seem that their merger with Virgin Media (VMO2) hasn’t shown to have had much of an impact on performance as they remain the lowest rated mobile operator across most of the categories which remained a common trend over recent years.

It’s good to note that as with most pieces of research, studies of this nature do have their limitations. The data set, as mentioned above, was crowdsourced meaning that this app-based data can be affected by various limitations and factors such as the location of the device and the various plans being used on those devices. 

It also doesn’t allow a solid baseline as there are no common bases across hardware and environment. 

So remember that collected data and testing performance in this way may not always give a complete picture. However, Opensignal are one of the more reliable organisations when it comes to analysing data such as this. 

Which mobile network operator are you with – And would you agree with the results? 

UK Smartphone Users: Are you Satisfied with 5G Mobile Performance?

UK market research provider OnePoll have recently released new survey data suggesting that 80% of smartphone users who use 5G to get online on their mobile are satisfied with the performance. 

80% of surveyed smartphone users satisfied with 5G mobile service

Commissioned by Green Smartphones (a smartphone comparison website), the poll surveyed 1000 UK based adults who use 5G mobile internet on their smartphone. 80% of the respondents reported being satisfied with both the coverage and the broadband speeds via 5G. 

The other 20% of respondents were split between being dissatisfied (8%) and undecided (12%). 

Over 50% say 5G mobile service meets expectations

The poll also asked the selected UK smartphone users whether the 5G they use on their mobile is faster or slower than they expected.

From those surveyed:

  • 53% said 5G mobile speeds were what they expected
  • 21% said it was faster than they expected
  • 12% said it was much faster than their expectations
  • Another 12% said it was slower than they expected
  • The remaining 2% said it was much slower than they expected

Can 5G live up to the hype? 

Recent news outlets have reported disappointment in the rollout of 5G, criticising the 5G mobile services that are available. 

The survey outlined above from OnePoll would suggest different, with the majority of their respondents reporting satisfaction with their 5G mobile service performance. Only a small percentage of those surveyed reported slower than expected 5G mobile speeds. 

As with most things tech, there is always a buzz and excessive hype with the rollout of anything new. Just like 4G and 3G technology before it, 5G services have been hyped up and over-sold with bit expectations for positive impact on mobile performance. 

Has 5G made fixed line broadband obsolete? No. Are we seeing a 5G-powered driverless car revolution on our roads? No, not that either. 

What we are seeing is an upgrade in mobile capability which is useful and appreciated by both businesses and consumers – Once it’s available to them. 

5G wireless network technology

Let’s not forget that 5G technology still has room to grow so further future improvements are likely. 

The expectation is that 5G broadband speed and network coverage will continue to grow and improve over the coming years. 

And, as is the world of tech, once we’ve welcomed and embraced 5G will open arms, attention will turn to 6G and the wild assertions of the benefits it will bring with it. 

Get in Touch

If you own a rural business and are struggling with broadband connectivity then get in touch with our Wi-Fi experts today. 

Our professional engineers in Hampshire can advise whether mobile broadband could help keep your business connected.

Small Rural UK Businesses Damaged by Unreliable Broadband

The Federation of Small Businesses recently published a report highlighting how rural businesses are struggling with the ‘cost of doing business crisis.’ Not only are these rural businesses facing growing energy costs and problematic transport links, but they are also being hit with unreliable broadband. 

Could your business function without reliable broadband? 

Think of all the ways your business, whatever the industry, depends on a strong internet connection. How much disruption would unreliable broadband cause to your business? Effective internet access has become as vital as other utilities to businesses and homes – Yet businesses run from a rural area don’t appear to have a connection they can rely on. 

The report highlighted a range of issues these small rural businesses are facing, but here at Geekabit our focus is always on connectivity. This report illustrates that for small rural businesses:

  • Almost a third (32%) report issues with the reliability of their broadband (in comparison to 17% of urban businesses).
  • Twice as many rural businesses reported that unreliable broadband has affected their ability to contact customers (14% vs. 6%), reduced the competitiveness of their business (11% vs. 5%), and led to a loss of business or sales (10% vs. 5%).
  • Only 58 per cent of rural small businesses state that the speed of their broadband is sufficient for their current and future business needs.
  • 43 per cent of rural-based businesses have not yet changed their transport habits because of the insufficient local infrastructure to support electric vehicles (e.g. charge points).

Small rural businesses have a lot to offer their communities and industries. They shouldn’t have to face a loss of sales because of unreliable broadband. 

What Can Be Done for Small Rural Businesses With Unreliable Broadband?

There are a few different recommendations from the FSB to help tackle the negative impact of poor broadband connections on small rural businesses.

Update the Government USO

One recommendation from the FSB for tackling the issue of unreliable broadband in rural businesses would be for the government to update their current USO (Universal Service Obligation) minimum requirements for both upload and download speeds.

The current minimum requirements in the governments USO is 10 Mbps download speeds and 1 Mbps upload speed. The FSB doesn’t specify in their report what the updated speeds should be, but with the average download speed being approximately 79.1 Mbps we would think the USO needs to be higher than the 10 Mbps download speed deemed to be decent enough. Indeed, the European Union has plans for the universal download speed to be 100 Mbps by 2025. 

UK law states that every home and business has the right to a decent, affordable broadband connection, which is currently the 10 Mbps stated in the USO at a price of no more than £48.50 per month. 

But is that 10 Mbps download speed enough for a small rural business to function? Of course, it does depend somewhat on what type of business it is. A small boutique shop that only sells to customers in person might not need as high a connection as a photography and video editing business. 

Unfortunately, that USO hasn’t even managed to reach every UK location. There are tens of thousands of premises still unable to access download speeds of 10 Mbps due to their remote location – Largely due to the costs involved to create the necessary infrastructure. These places find themselves unable to connect to fixed line or fixed wireless services, whilst also being out of reach of suitable 4G/5G coverage. Making the necessary upgrades to these areas could cost hundreds of thousands of pounds if not into the millions. 

For this reason, just raising the minimum download speed in the USO isn’t going to be a magic fix for all rural businesses struggling with ineffective broadband. The infrastructure needed to really make a difference will take time and money to implement. Remember that this is also funded by the industry itself – Currently ISP’s BT and KCOM – Who have already committed to big legal and financial responsibilities by supporting the government’s USO scheme. 

At the end of the day, every business, including small rural businesses, deserve – And have the legal right to – decent broadband. And perhaps the USO figure of 10 Mbps isn’t cutting it now that we are doing business in a more connected world. A ‘decent’ broadband connection needs to reflect the individual needs and digital demands of individual businesses. Amongst other things, businesses need a strong connection to:

  • Communicate with customers – Online presence is essential in this day and age
  • Take online and mobile payments – Very few people pay using cash, and more customers are opting to pay via their smartphones
  • Send and receive large amounts of data 
  • Utilise E-commerce websites and ordering
  • Transmit orders to warehousing 
  • Connect via video conferencing

Project Gigabit Budget

The government has been trying to shrink the gap between the USO minimum speeds and the average internet speeds enjoyed in other areas with their Project Gigabit rollout. 

This aims to provide nationwide coverage by 2030 (nationwide meaning around 99%). 

The FSB recommends that the DSIT (Department for Science, Innovation and Technology) should take a proportion of the remaining budget allocated to Project Gigabit and use this to help those in hard to reach areas to connect to superfast broadband. 

LEO Satellite Broadband

Let’s not forget the possibility of LEO based satellite broadband like Starlink also being used to help those in particularly problematic areas. 

With more launches planned, this satellite network is only going to grow and could potentially help rural business (and homes) connect to more reliable internet.

The Shared Rural Network

There is also the Shared Rural Network scheme which is putting £1 billion into expanding 4G coverage. The FSB recommends that the DSIT ensures that the target of 95% of the UK having 4G coverage by 2025 is met. 

As part of the Shared Rural Network, our Wi-Fi experts here at Geekabit are helping to implement a rural 4G broadband scheme in West Sussex

Through this scheme, West Sussex businesses that are currently suffering from the slowest broadband speeds (10 Mbps or slower) are being supported to get online with an alternative 4G mobile broadband solution.

This 4G solution on offer to the county’s businesses uses 4G mobile data to connect their business premises to the internet in the same way that a smartphone sends and receives information. The solution uses a single, professionally mounted external antenna which is installed at the qualifying property. The external antenna can deliver a 4G signal directly into a newly supplied router, which then projects the connectivity in the form of Wi-Fi around the property, in the same way that conventional broadband works.

This investment in digital structure is part of the council’s plan to support a sustainable and prosperous economy, and businesses are already seeing huge benefits from using mobile connectivity. 

Get in Touch

If you own a rural business and are struggling with broadband connectivity then get in touch with our Wi-Fi experts today. Our professional engineers in Hampshire can advise whether 4G mobile broadband or Starlink Satellite broadband could help your business.