Can Scientists Use Wi-Fi to Watch Us Through Walls? 

American researchers based in Pennsylvania have shown a way to map the position of human bodies using AI (Artificial Intelligence) and Machine Learning with a deep neural network alongside Wi-Fi signals.

By analysing the phase and amplitude of Wi-Fi signals, Carnegie Mellon University researchers can see where people are, even through walls!

Over the last few years, researchers and scientists have done much work in this area. They’ve been looking at ‘human pose estimation’ which is identifying the joints in the human body and using sensors to work out body position and movement. To experiment with doing this, they’ve looked at:

  • RGB cameras (used to deliver coloured images of people and objects by capturing light in red, green, and blue wavelengths)
  • LiDAR (a Light Detection and Ranging system which works on the principle of radar, but uses light from a laser)
  • Radar (a radiolocation system that uses radio waves to determine the distance, angle, and radial velocity of objects relative to a site)

Why is this useful? Using a type of sensor to detect body position and movement could be used for video gaming, healthcare, AR (Augmented Reality), sports and more. 

The problem is that to do this with imagery (i.e. cameras) can be tricky due to being affected negatively by things like lighting or things obscuring the view. 

And to use radar or LiDAR is not only expensive but requires a lot of power. 

Enter, Wi-Fi. 

Using Wi-Fi Signals as a Human Sensor

The team at CMU in Pennsylvania decided to look into using standard Wi-Fi antennas alongside predictive deep learning architecture in order to detect body position. 

How does it work? Using a deep neural network, the phase and amplitude of Wi-Fi signals are mapped out to UV coordinates within 24 regions of the human body.

Their study revealed that using their model with Wi-Fi signals as the only input, they can estimate the dense pose of multiple subjects. The performance of this method was comparable to other image-based approaches. 

As we said above, other methods use a lot of power and are also expensive. This Wi-Fi method that the ‘DensePose from Wi-Fi’ paper outlines, offers a lower cost alternative that is more widely accessible. It also says that it allows for privacy-preserving algorithms, which means that for human sensing it is less invasive than using Radar or LiDAR tech in non-public areas. 

Although, not much of all this research sounds particularly preserving of privacy does it! 

Has Wi-Fi Been Used as a Human Sensor Before?

Whilst the premise of monitoring people in a room using Wi-Fi isn’t a new one, the actual data previously collected wasn’t very clear, with trouble actually visualising what a person was doing within that room. 

The difference with this new research from CMU is that it is using DeepPose and machine learning technology to not only estimate what the target person is doing, but also clearly make it visual. 

As we said earlier, it’s also more accessible. The model they used needed just 2 wireless routers, each with 3 antennas and worked via the usual 2.4GHz band. 

All you would need to do is put each router and antennas at either side of the target, and then gather the data by having full control of both units. 

Whilst it’s more straightforward than Radar or LiDAR, there are still a couple of flaws. The range is limited by the weakness of Wi-Fi signals, and the accuracy could still be an issue too. 

‘DensePose From Wi-Fi’ Paper Summary

The main things to take from this recent research are:

  • Wi-Fi signals make it possible to identify dense human body poses by using deep learning architectures
  • The public training data in the field of Wi-Fi based perception limits the performance of this current model, especially with different layouts
  • The system has some difficulty identifying and representing body poses that are less common, and also struggles if there are 3 or more people concurrently
  • Future research will aim to look at collecting multi-layout data as well as utilising a bigger data set in order to predicting 3D body shapes using Wi-Fi signals and correctly interpret data

The researchers believe that this Wi-Fi signal model could result in cheap human sensor monitoring as an alternative to RGB cameras and LiDARs.

If you want to read more, you can access the ‘DensePose From Wi-Fi’ paper here.

Here at Geekabit we’re interested to see what comes up when this is peer reviewed. What are your thoughts on using Wi-Fi signals to map and visualise people inside rooms? 

SpaceX Starlink to Provide Next-Generation Wi-Fi to Carnival Cruises

If you are a part of the cruising community then you might have seen via Carnival Corporation that they have signed a new agreement with Starlink – The satellite technology leader.

Even if you’re not a part of the cruising community, you will likely have heard of Carnival Corporation. They are one of the world’s largest leisure travel companies, boasting a portfolio of world-class cruise lines.

This provision of next-generation Wi-Fi on Carnival cruise ships is all set to transform connectivity for both guests and crew, bringing the ships faster internet and greater capacity. 

This new and improved Wi-Fi connectivity will start aboard the Carnival Cruise Line and AIDA Cruises brands. 

Carnival is the world’s largest cruise company, so it makes sense that they are committed to providing their guests with fast internet. Their ongoing strategy is to provide their guests with the best Wi-Fi experience at sea by tripling bandwidth fleet-wide since 2019. 

Last week, the latest move in this connectivity strategy was signing an agreement with SpaceX’s Starlink to provide next-generation internet connectivity across its global fleet. 

Starlink utilises LEO (Low Earth Orbit) satellite technology, providing faster service, greater capacity and more reliable Wi-Fi on a global scale. 

Rollout of Starlink connectivity on board cruise ships has begun

December last year saw the beginning of the Starlink rollout across their Carnival Cruise Line and AIDA Cruise fleet of ships. 

They have plans to extend Starlink connectivity to more of their world-class cruise brands such as Princess Cruises, P&O Cruises (Australia and UK), Cunard, Holland America Line, Costa Cruises and Seabourn. 

Until recently, at-sea experiences of Wi-Fi aboard cruise ships were not very comparable to on-land connectivity. By signing with Starlink, Carnival are greatly improving their on-board connectivity for guests (and crew) by offering the best available Wi-Fi experience – Rivalling even on-land connectivity. 

In an age where the majority of people expect to be able to connect whilst on holiday, this is big news. How can guests share their holiday snaps with friends and family back home if they’ve got patchy Wi-Fi? 

Guests may also find that they would like to stream movies back in their cabin via Netflix or watch specific sports matches live – Buffering is not an option. 

Starlink to provide cruise guests and crew with home-level connectivity whilst at sea

CEO of Carnival Corporation, Josh Weinstein says:

“For many of our guests, it has become more and more important to maintain the type of connectivity at sea that they’ve become accustomed to at home, and of course to share the unforgettable experiences of their cruise with friends and family.

“We are in the business of delivering happiness, and Starlink makes it as easy as possible for our guests to share all their great moments and memories, giving them even more joy out of their cruise vacation.”

Not only does this new-generation Wi-Fi bring more joy to guests, but it will also enable Carnival brands to offer new guest services and features – All through added bandwidth.

And it’s not just the guests that will be seeing the benefits of Starlink connectivity on board. The increased bandwidth will also help at an operational level with things like onboard equipment monitoring as well as real-time communications between teams on ship and on the shore. 

Whatsmore, Carnival isn’t just about bringing joy to their guests at sea but their crew too. Guests aren’t the only ones that want to stay in touch with friends and family back home whilst they’re aboard the ship – Their crew members also want to do the same. Starlink’s innovative satellite technology will enable them to do just this. 

Starlink thrilled to bring high-speed broadband to remote waters

Vice President of Sales for SpaceX Starlink, Jonathan Hofeller says:

“High-speed, low-latency broadband internet is critical in our modern age, and we’re excited to provide Carnival Cruise Line and AIDA’s guests an internet experience that makes their travel even more enjoyable.

“In even the most remote waters, guests onboard Carnival Corporation ships will be able to share real-time updates with friends and family.”

Carnival already has a portfolio of world-class communications service and technology providers for their ships – Satellite and otherwise. Starlink are the latest provider to join this growing group of pioneering tech providers. 

Carnival remains the industry leader for their connectivity, fleet wide. Their global presence sees almost 100 ships visit over 700 ports worldwide. It’s little wonder they are innovative in their attitude to connectivity, using a multi-provider approach with a framework strategically designed to optimise their network speeds and route internet traffic aboard their fleet anywhere in the world. 

Our resident Wi-Fi expert and CEO Steve is a bit of an avid cruise goer. He’s excited to check out first hand how Starlink next-generation satellite Wi-Fi will enhance the guest experience aboard these cruise ships. 

To read more about this new-generation Wi-Fi aboard Carnival cruise ships, you can visit their website: www.carnivalcorp.com or  www.carnival.com.

We’re Experts in Starlink Installations

Of course, cruise ships aren’t the only industry that can benefit from Starlink satellite connectivity. There are plenty of places on land that could see an improvement in internet speeds by using Starlink technology. 

As experts in Starlink installation, do get in touch with us here at Geekabit if you think your rural business or outdoor event could benefit from satellite broadband. We’d be more than happy to chat through the options and see if Starlink satellite technology could transform your connectivity. 

Launch of UniFi Mobile Router

As regular installers of Ubiquiti kit since 2013, we’re excited to see the pending launch of their UniFI Mobile Router.

No signs yet that it is available in the UK, but as we work with Teltonika and Robustel 4G and 5G routers on a weekly basis, this has the potential to be a game changer in the market place for mobile connectivity Installers.

Enterprise clients will be looking to maintain the same manufacturer and one family of products wherever possible, and Ubiquiti will know this is a corner of the market they can easily win at.

Boost Your Wi-Fi Speed This Christmas By Not Placing Your Router In This Room

You could be able to increase your internet speed over the Christmas period just by moving your router out of a particular room in your home. 

As schools and businesses slowly come to a close for the Christmas break, you might find your home internet buckling under the increased traffic. Children home from school, friends and family visiting – There could suddenly be many more devices all trying to connect to your Wi-Fi at the same time. 

So making sure your router is placed in the prime position could be vital in making sure Netflix streams don’t buffer, online games don’t freeze and video calls with relatives don’t stutter and fail. 

How Can You Make Sure You Get the Fastest Internet Speeds Possible Over Christmas?

Hands up if you’ve got some kind of new device on your Christmas list? Imagine Santa delivers that new games console, smartphone or smart home gadget – But your Wi-Fi speed and signal can’t handle it.

Have you ever counted how many devices you have in your home that are connected to the internet at any given time? The obvious ones are smartphones, laptops and tablets. But then there’s the TV, online gaming, smart home devices like heating and lighting controls. 

Then add in these new devices and it’s little wonder the Wi-Fi might start to struggle. 

Here are some of our Wi-Fi experts top tips to keep your Wi-Fi quick this Christmas:

  • Never keep your router in a cupboard. We know they’re not the prettiest things, especially if you have an eye for design, but hiding it away in a cupboard is going to affect the strength of the signal
  • Avoid placing your router behind the TV as this can block the signal
  • We know everyone is trying to be savvy with their electric use to keep bills as low as possible, but switching off your router at night isn’t a good idea as it will miss automatic updates (and it won’t save you much money either)
  • Schedule a time once per month to switch the router off and reboot. This can help to clear any issues and keep it working to its full potential
  • Use a tool or app to check what internet speed you are getting. If it doesn’t match what you’re paying for, then give your ISP a call.
  • Place your router in the upright position it’s designed to be in – Not on it’s side or upside down
  • If possible, try to position your router in the centre of your home. This will help to ensure that the signal reaches every room.
  • Try not to place your router near large objects, mirrors or fish tanks as these can all inhibit the signal
  • You might see a decrease in internet speed if you put up your Christmas tree directly over or in front of your router. The lights placed on the tree can, in some cases, negatively affect the signal from the router. You can read more about this here

What Room Should You Never Have Your Router In?

There is one room in the home that has the most potential for causing interference to your router signal and wreaking havoc on your Wi-Fi. And that is the kitchen. This is the worst place you could choose to place your router. 

Your router is consistently beaming out signal the whole time it’s on and connected to your ISP. The kitchen has the highest possibility of interrupting this signal due to the appliances kept and used in there. 

Electronics and metal can cause a lot of problems for your Wi-Fi connection. Appliances like washing machines, fridges and ovens are metal heavy and can block the signal from your router if it is placed too close by. 

Appliances and electronic devices that emit their own signal can also cause interference, like microwaves. If your router is placed near the microwave, you will likely notice a big slow down of Wi-Fi every time the microwave goes on. 

Kitchens are not a good environment for your router, even if your kitchen is in the centre of your home. You will get much better signal strength and speed if you place your router in a room away from large appliances and signal emitting devices. 

Stay Connected This Christmas

Christmas is a time for connection – In real life with those closest to you, and online with those that live further afield. Don’t let your router position and Wi-Fi strength be the reason you can’t connect with loved ones this Christmas. 

What Can We Expect from Wi-Fi 8? 

Towards the end of November, there was an IEEE 802.11 conference in Thailand taking a look at what will eventually come to pass as what we will know as Wi-Fi 8. 

As with all things tech, things move at a quick pace as standards and technology advance. These meetings and conferences are important to discuss these advancements and how they affect and consolidate the next standard. 

They are a great opportunity for members of the IEEE to not only raise questions but be a part of technical proposals, as well as see what is coming up next in the world of Wi-Fi. 

New developments have the potential to affect things like certification and products, so it’s really useful to get insider knowledge. 

So what happened at this latest meeting and what will it mean for Wi-Fi 8?

You might be thinking, wait – Do we even have Wi-Fi 7 yet? The Wi-Fi 7 certification program is expected to be rolled out in 2023. But as always, there is always the next standard waiting in the wings! Things are advancing all the time and the next tech development is always on the horizon. 

Currently, we’re waiting for the 802.11be standards to be finalised. The latest IEEE meeting had a look at this with a view to getting some of the more intricate details all ironed out ready. 

The specifications for Wi-Fi 8 will likely be determined by the UHR (ultra high reliability) study group that studies various proposals. 

Will mainstream Wi-Fi use the 60 GHz spectrum in the future?

There will have been various technical presentations as a part of the IEEE meeting, with different contributors vying for different approaches to the next standard of Wi-Fi. 

An interesting potential consideration for Wi-Fi 8 was the use of the 60 GHz spectrum within mainstream Wi-Fi. WiGig, based within IEEE 802.11ad/ay, isn’t a popular choice within mainstream Wi-Fi when it comes to products. 

There are contributors that want to change this for the next gen standards, particularly in terms of integrating AR/XR/VR and the like on the 60 GHz band. 

Not everyone was pro this idea, with other contributors raising the fact that the 60 GHz band had been lacking in success. Instead, they want the UHR to study another area of the spectrum – sub-7 GHz – And look for Wi-Fi improvements there. 

Of course, these meetings are the prime place for these discussions, with a view to identifying the best course of action for the next generation of Wi-Fi standard, and where the most enhancements can be found.

The outcome of these discussions within the IEEE 802.11be meetings and the UHR studies will ultimately shape what we will come to know as Wi-Fi 8. Nothing has been finalised yet, but watch this space! 

Connectivity Alliance – Telecoms Providers Join UK Landowners 

Last week on November 23rd, UK telecommunications providers, infrastructure providers and landowners joined together to form the NCA (National Connectivity Alliance). Why? Well. the main aim is to make collaboration easier on mutual areas of interest as well as aid the rollout of new networks. 

Let’s think about digital infrastructure for a moment – We’re talking about things like trenches for optical fibre cables and mobile masts. It’s easy to see why landowners and digital infrastructure developers might not be on the same wavelength (if you’ll pardon the pun). Previously, landowners would only allow operators to deploy infrastructure on their land in return for high rental fees. This would in turn have a knock on effect for consumers and telecommunications providers as operators would be unable to increase their coverage due to expensive rental fees. 

Back in 2017, the government amended the ECC (Electronic Communications Code) in order to make it more straightforward (and cheaper) for operators to access both public and private land. However, this didn’t have the balancing effect needed and lent instead more in favour of the providers – Some forcing rent of an extremely lower price. 

These lower rents didn’t take into account that landowners had multiple considerations to make like:

  • Facilitating access 
  • Ability to repurpose sites for other ventures (or inability to do so once infrastructure had been deployed)
  • Impact on insurance of any kit fitted to a roof
  • Safety risks for residents near base stations
  • Keeping an area used for deployment in good repair

You can see why this could easily end with disputes in court! Of course, the goal for everyone is to successfully roll out broadband and mobile networks, and the upcoming PSTI bill (Product Security and Telecommunications Infrastructure) plans to make the changes needed to do just this. 

It’s clear to see that something like the NCA is necessary to help increase collaboration between both landowners and digital infrastructure developers. 

The NCA Chair and Co-Founder is Partner at Blaser Mills Law. Carlos Pierce is thrilled to launch this cross-industry body that will benefit all parties – Including the general public. This new found collective of landowners and digital infrastructure developers will help improve digital connectivity for all. Industry experts bring about best practice, as well as helping landowners to have a deeper understanding of all things digital infrastructure. This combination of education and communication through this NCA collaboration brings an awareness of the needs of all parties in this sector, eventually benefitting the general public. 

The Minister for Digital Infrastructure, Julia Lopez MP, welcomes this new alliance in support of ‘world class connectivity’ for all people across the UK, regardless or whether they live in a city or rural area. Bringing together industry experts and landowners in this way will go a long way in helping negotiations so that all parties are happy. As a result, we can expect this new NCA to boost connectivity, productivity and even the economy. 

You can find out more about the NCA and what they’re about by visiting their website, or have a read of their latest press release here

Image from https://www.ncalliance.org.uk

What If Wi-Fi Had Never Happened?

Isn’t it the most frustrating thing when you hit a Wi-Fi deadspot? No connection, nothing, no matter how many times you re-load the page. In this age of working from home and taking the internet with you wherever you go, it’s hard to imagine a time or place when you couldn’t quickly check your emails or have a scroll through Instagram. 

But did you know that Wi-Fi very nearly didn’t happen in the first place? Wi-Fi almost hit its very own deadspot – And wouldn’t that have changed our lives as we know it! Let’s get to the root of Wi-Fi and see how wireless internet came about.

When was Wi-Fi officially launched?

Just over 23 years ago, on the 25th September 1999, Wi-Fi was officially launched. If you think about the fuss that’s made over a new product launch from Apple, then you might have expected the launch of Wi-Fi itself to be a rather flashy affair. 

In reality, it was a bit Big Bang Theory-esque – A convention centre in Atlanta housing 8 technophiles ready to open their jackets to reveal polo shirts emblazoned with the made-up word Wi-Fi. And all in front of a crowd of just 60 people. 

Some of the biggest tech companies, and some smaller ones too, backed the launch enthusiastically. Even the likes of Apple, Dell and Nokia could never have imagined that they were backing such a huge global phenomenon with incredible economic, social and cultural impact across the world. 

It was the summer of ‘99

Think back to the summer of 1999, if you can. The working world was mostly using wired networks via Ethernet cable. LAN’s (Local Area Networks) connected desktop computers at a rate of 10 Mbps. 

Meanwhile, those trying to send emails from home did so to the sound of a modem trying to connect to another modem via repurposed telephone infrastructure. Dial up internet and 56 Kbps dial up modems clanked and clanged their way online. Arguments were had over who needed to use the computer and who needed to use the telephone. 

There were products for WLAN’s (Wireless Local Area Networks) but these were predominantly just for businesses. The IEEE (Institute of Electrical and Electronics Engineers) official wireless standard specification for these wireless products was 802.11. Not only were these products expensive, they were also 5 times slower than their wired equivalent. 

Despite there being a specified wireless standard, this unfortunately didn’t mean that one standards compliant wireless product would be compatible with another. This was largely due to the fact that there were different ways of interpreting the specification. 

These weaknesses meant that some companies looked elsewhere and chose to support other rival technology alliances – Each with their own aim of becoming the actual standard. 

Wi-Fi’s rival – HomeRF

One of these rival specifications was developed by a consortium of other technology giants – Compaq, Hewlett-Packard, IBM, Intel and Microsoft. Their WLAN ‘HomeRF’ was aimed at consumers (rather than businesses) and was backed by over 80 other companies. In comparison to the other standard, the HomeRF products were not only cheaper but could also communicate with each other. 

With a name like HomeRF (short for Home Radio Frequency) it arguably had a catchier name that IEEE 802.11. They didn’t just have their eyes on the consumer market – They also had big plans for expansion and higher speeds for the business market. 

Despite all of this, the second generation of the IEEE standard, 802.11b was heading steadily for its final approval at the end of September. By the end of the year, there were products due to ship from company 3Com (later acquired by HP along with Compaq). Their products were based on the newer, faster standard and set for release before 1999 ended. 

At the time, networking firm 3Com formed WECA (Wireless Ethernet Compatibility Alliance) bringing together 5 strong advocates for IEEE. Their aim was to make sure that any products using the pending second generation standard would all be compatible with each other. 

Originally tipped to be named ‘FlankSpeed’, connectivity as we know it today was trademarked as Wi-Fi. There began the establishment of the rules by which wireless products could be deemed ‘Wi-Fi Certified.’

What if Wi-Fi had not won out against HomeRF?

Wi-Fi won the wireless standard race, but what if HomeRF had in fact taken the lead? There are ways that all might not have worked out as it has. 

If the second generation standard 802.11b had been delayed, then HomeRF may have been able to sneak ahead. It was only due to a compromise between WLAN industry pioneers (and foes) Lucent Technologies and Harris Semiconductor that meant there was no delay. 

What if FlankSpeed was only available at work?

So what if WECA had decided only to focus on business connectivity? That was a discussed possibility. ‘Go anywhere’ connectivity almost wasn’t on the table. And what if ‘FlankSpeed’ had been chosen over ‘Wi-Fi’? 

A big chunk of today’s workforce rely on being able to bring work home with them. And not just home – What about coffee shops, airports, on the daily commute sitting on the train? Nowadays we tend to take work with us wherever we go. 

Had we been using FlankSpeed at the office and HomeRF at home, this would have made things very difficult for anyone working from home. And you can forget about coffee-shop-working and catching up on emails waiting for a plane – It’s possible neither of these public access options would exist. Zones that were not home and the office would have been a no-go (or NoHO) for working online. 

And if you’re wondering about FlankSpeed and Smartphones – That would have been a no as well. The mobile world of online connectivity disappears into the mist, out of grasp. 

Would it have been beneficial to have more than just one wireless standard? 

The benefits of having a singular focus on just the one standard meant that there was more scope for innovation and cost reduction. 

Even if FlankSpeed or HomeRF had gone forth alongside Wi-Fi, it couldn’t have ever become as cheap to run or prevalent and globally penetrating as Wi-Fi. 

Having a universal standard means that retail stores, public spaces and anywhere where we would now expect to be able to connect, could roll it out uninhibited. Had this not been the case, the ability to stream video whilst sipping a coffee or connect to emails whilst sitting on the train may not be available. 

Thinking on a global level, those living in emerging market countries like Nigeria, rely on free Wi-Fi hotspots to be able to connect to the rest of the world. Remote islands like the Bahamas also rely on Wi-Fi to get support following adverse weather conditions like hurricanes. In this way, Wi-Fi provides critical connections all over the world.  

HomeRF folded in 2003 – So how did Wi-Fi succeed so quickly? 

As with all well-laid plans, it’s all in the preparation and timing. With the announcement of the name Wi-Fi and the promise of certified interoperability from WECA, companies investing in this new wireless standard had the assurance that their products would all work together. 

In 2000, 86% of Wi-Fi devices were used for business. Wireless connection in businesses was big business in itself, with chipmakers and PC companies quickly hopping off the fence to support and join Wi-Fi. This led tech giants Microsoft and Intel to jump ship from HomeRF to Wi-Fi. Wireless for business soared in popularity ahead of in the home, which gave Wi-Fi chip volume a boost. This in turn led to closing the cost gap between that and HomeRF, leading it to fold in 2003. 

Since then, over the past 2 decades the Wi-Fi Alliance and IEEE have worked together to represent, guide and oversee Wi-Fi and its subsequent standards. 

The IEEE committee continues to roll-out new standards, and the WI-Fi Alliance makes sure that certified products can communicate with each other. 

So the next time you hit a Wi-Fi deadspot, or find that the Wi-Fi is down in your favourite coffee shop – Stop and breathe. Count your blessings that you can take your work with you wherever you go (mostly) and that you can largely connect via Wi-Fi wherever you need it. 

Happy Birthday to the 1940’s Sex Symbol Who Co-Invented Wi-Fi

Last week on November 9th, it would have been Hedy Lamarr’s 108th Birthday. Better known for her leading roles in Hollywood, this bombshell was actually the brains behind the technology we have used for Wi-Fi and Bluetooth. 

Despite being a famous actress and arguably one of the most beautiful women in the world, her passion was science and she spent all her free time between filming tinkering with ideas and inventions. 

Without her innovative mind and natural affinity for scientific problem solving, we may not be using the Wi-Fi, Bluetooth and other RF technologies we rely upon each and every day. 

Along with composer George Antheil, Hedy Lamarr patented FHSS (Frequency Hopping Spread Spectrum) back in August of 1942. The inspiration for their idea was to prevent signal jamming on RF-controlled torpedoes. 

Hedy Lemarr heard about the possibility of United States Navy torpedoes being veered off-course from enemy signal jamming – Leading her to the idea of a frequency-hopping RF guidance system that would be much more difficult to jam and interfere with. 

Despite the brilliance of the idea, it was unfortunately never used for its intended purpose, with senior officials taking the view that Hedy would be more helpful in the war effort selling kisses as a pin-up. 

Despite Hedy and George attempting to patent their RF transmitter device that emulated player-piano capabilities, their ingenious frequency hopping idea was immediately classified by the US government and was not used in time to help with World War II. 

15 years later, the idea of spread spectrum and FHSS was further developed and used for the first time during the Cuban Missile Crisis between US ships blockading Cuba. 

In the 1970’s, FHSS was declassified but with their original patent now expired, neither Hedy or George made any money from their technology or the subsequent developments.

What does FHSS have to do with Wi-Fi?

Most of the early Wi-Fi deployments used frequency-hopping technology, with FHSS being one of the original technologies used for RF communication. Legacy Wi-Fi radios using RF communications used the 2.5GHz ISM band. Most frequency-hopping legacy Wi-Fi radios were made between 1997 and 1999. 

How does FHSS work? 

In simple terms, Frequency Hopping Spread Spectrum works by using a small frequency carrier space to transmit data, then hopping to another small frequency carrier space and transmits data, then to another frequency, and another and so on. 

In more specific terms, the frequency and period of time used for each data transmission is precise and determined by the dwell time. FHSS will transmit data for a set period of time (dwell time) on a certain frequency. After that time, it will move to another frequency and again transmit for only the dwell time before moving on again. 

The hopping used by FHSS radios is predetermined with a set hopping sequence. Rather than transmitting on one set channel of frequency space, a pattern of hops (or subchannels) is predefined so that it is hopping through a series of small carrier frequencies. Once a series of hops has been completed, it then repeats. 

The Institute of Electrical and Electronics Engineers (the IEEE) is the largest technical professional association, nurturing, developing and advancing global technologies. The standard of 802.11 from the IEEE specified that each hop must be 1 MHz in size, and then arranged in a predefined sequence. 

These sequences consisted of at least 75 hops but no more than 79 (in North America and the majority of Europe). Some other countries used much less hops, e.g. France had a sequence of 35 and Japan used 23. 

In order for a transmission to be successful, both the FHSS transmitters and receivers had to be synchronised on the same carrier hop at the same time. An FHSS access point could be used to configure a hopping sequence, with the information then being delivered via 802.11 beacon management frame to a client station. 

The dwell time is also specified by the local regulatory body. A maximum dwell time of 400 milliseconds per carrier frequency during any 30 second time period was set by the Federal Communications Commission. They regulate international communications through cable, radio, television, satellite and wire to promote connectivity. However, typical dwell times are usually between 100 and 200 milliseconds. 

The IEEE 802.11 standard also specified a maximum bandwidth of 79 MHz. This means that the maximum number of hops possible for a hop sequence would be 79. Based on a hop sequence of 75 hops, with a dwell time of 400 ms, it would take approximately 30 seconds to complete one FHSS hop sequence. As we mentioned above, once completed, the sequence is then repeated. 

Remember that the original aim of this technology was to prevent signals getting jammed and US Navy torpedoes being veered off course by the enemy. Due to the Wi-Fi FHSS transmissions jumping inside a frequency range of 79 MHz, a narrowband signal or noise would only disrupt a small range of frequencies. This means that it would only cause a minimal amount of throughput loss.

The effects of interference can also be diminished through decreasing the dwell time. The longer the dwell time, the greater the throughput as the radio is transmitting data throughout the dwell time and the less often the transmitter has to waste time hopping to another frequency. The shorter the dwell time, the more frequent the transmitter has to hop, which decreases throughput. 

Do we still use FHSS for Wi-Fi?

For Wi-Fi we have moved on to other RF technologies like OFDMA (orthogonal frequency-division multiple access) rather than FHSS.

However, we do still use FHSS for devices using Bluetooth and other radio transmitters. 

If it wasn’t for the brains of Hedy Lamarr, we might have never seen the Wi-Fi and Bluetooth technology that we all know and love. If you’re interested to know more about Hedy Lamarr and the story of how her brains far exceeded her renowned beauty, have a look for the documentary ‘Bombshell – The Hedy Lamarr Story’ (2017). You can rent or buy it via Amazon Prime and other streaming platforms. 

As we all know with technological advances, there are many great and innovative minds out there. Perhaps even if Hedy and George hadn’t come up with their frequency-hopping idea, someone like-minded would have come up with a different path on the route to Wi-Fi and RF communication as we know it today. 

But the story of sex symbol and scientist Hedy Lamarr is always an interesting one for us Wi-Fi geeks. So Happy Birthday and Thank You to her! 

Image from https://en.wikipedia.org/wiki/Hedy_Lamarr

Is the Google Nest Wi-Fi Pro Any Good? 

Now that the deliveries have started to drop, the reviews are beginning to come in for the Google Nest Wi-Fi Pro – And so far they’re rather mixed opinions. So is it any good or not? 

Dubbed as the router for working-from-home and a valid step up from its predecessor – Is the Google Nest Wi-Fi Pro the right mesh router for you?

If you read our recent blog on this, you’ll already know that this latest Wi-Fi device from Google brings together Wi-Fi 6E, Thread and Matter functionality. (Wondering what Matter is when it comes to Wi-Fi? Read this). The Nest Wi-Fi Pro enables you to control your smart home devices through this mesh router.  

Wasn’t Google Nest already a mesh network? Yes. Back in 2016, Google launched it’s first mesh Wi-Fi system, followed by Nest Wi-Fi in 2019. This device topped many lists looking at the best mesh routers – Will the Google Nest Wi-Fi Pro follow in its footsteps?

They don’t come cheap – This latest addition to Google’s collection of Wi-Fi devices is more expensive than those before it. Which would make sense if it’s offering upgraded functionality. But is it worth the upgrade and the price? Let’s take a look. 

Google Nest Wi-Fi Pro – The Pros 

We’ll start with all the most positive things that make this new Wi-Fi device worthy of consideration for your home network. 

Why Does Wi-Fi 6E Compatibility Make a Difference for the Google Nest Wi-Fi Pro?

Perhaps the biggest upgrade from previous products is adding in Wi-Fi 6E functionality for the Google Nest Wi-Fi Pro. What does this actually mean? Let’s get technical for a second. The previous Nest device was compatible only with Wi-Fi 5, aka 802.11ac. This means that the router could only use the 2.4GHz and 5GHz bands. With added Wi-Fi 6E functionality, the Nest Wi-Fi Pro can use the 6GHz band, giving you access to faster, more reliable internet. 

With the ability to access all 3 radio bands at the same time, the Nest Wi-Fi Pro can provide a combined maximum speed of 5.4 Gbps.

Unsurprisingly the addition of Wi-Fi 6E compatibility means the Nest Wi-Fi Pro will offer faster speeds for other Google products to make the most of – Think the Pixel 6, Pixel 6 Pro and the imminent Pixel 7 and Pixel 7 Pro.  

It’s safe to say that Google are taking this new Wi-Fi standard and running with it, bringing the consumer a faster, more reliable internet connection. 

Google Nest Wi-Fi Pro Offers Sizeable Coverage With Scope to Branch Out

Even the largest of homes can secure a strong Wi-Fi signal with Google Nest Wi-Fi and Nest Wi-Fi Pro. With just the one unit you can gain coverage across 120 metres squared, and with the option to have a total of 5 units that’s 600 metres squared of coverage. This is what helps set Google’s Nest Wi-Fi mesh products apart from the rest. (Google doesn’t recommend exceeding 5 units so as to avoid any Wi-Fi interference). 

So whether you are living in a cosy flat or expansive mansion, the Google Nest Wi-Fi Pro has got you covered. What’s more, if you move into a larger property, it’s easy to add in another unit to scale up the coverage in your new home. 

How Many Connected Devices Can Google Nest Wi-Fi Pro Support?

The number of connected devices supported on the Google Nest WI-Fi Pro has increased to 300 (up from 200 on the previous Nest product). 

Why on earth would you need to support 300 devices on your network? Well that really depends on how large your home is and how many people live there. It’s not just about personal devices like laptops, tablets and smartphones. With the prevalence of the smart home, which this particular product is great for, comes the increase in smart home devices. Think smart light bulbs, smart speakers and any other connected devices you want to control remotely. 

The Google Nest Wi-Fi Pro has the capacity to handle these with ease, whereas a more traditional router might meet its limit rather quickly if you’re building a smart home. Furthermore, this device has the ability to prioritise connected devices so you get the connection where you need it most. With MU-MIMO technology, the Nest Wi-Fi Pro units can also communicate with multiple devices at the same time. 

Google Nest Wi-Fi Pro and Parental Controls

If you have children that use the internet, you’ll know only too well how important it is to have parental control over the Wi-Fi. 

The Google Nest Wi-Fi Pro has parental control software built in for free. This means you can:

  • Put your children on a Wi-Fi schedule e.g. no internet at meal times or after 8pm
  • Use Google SafeSearch technology to block content that is deemed unsafe
  • Edit control settings via the Family W-Fi menu in the app 

The fact that this is built in at no extra charge helps set the Google Nest Wi-Fi Pro apart from its competitors. For example, Orbi mesh routers from Netgear charge a subscription fee in order to set internet time limits and restrictions. 

It’s worth noting that this feature is also available on Google’s previous Nest Wi-Fi product as well. 

Matter and Thread Compatibility on the Google Nest Wi-Fi Pro

Google is really looking ahead with their latest product by including Matter support with this device. Technically it won’t be available from launch, but as we start to see an increase in more Matter-enabled devices creeping into our smart homes, it will make adding new products easier in the future. 

Like Matter, Thread is another network function being spoken about more and more. So it makes sense that the Google Nest Wi-Fi Pro also has a Thread border router built in. We could go into much more detail about Thread but we’ll save that for another time. For now, Thread offers a lower power mesh to your home network, so the ability to connect Thread smart devices in the future will be appealing to many.

Google Nest Wi-Fi Pro: Pros on Price

If you are looking for a simple, stand-alone Wi-Fi 6E router, then a single Nest Wi-Fi Pro unit is probably the cheapest option at a cost of £190. Other competitive alternatives are almost double this price. 

Even if you are looking at getting the pack of three units at £380, then it seems worth the money as you’re getting three units for roughly double the cost of one. That seems like pretty decent value to us. 

Google Nest Wi-Fi Pro – The Cons

So we’ve gone through the reasons why you might want to rush out and upgrade to this latest Wi-Fi product. But what could cause you to pause that thought? Let’s see. 

What’s the Design Like on the Google Nest Wi-FI Pro?

The aim of many modern Wi-Fi products is to make them less ugly. The less you are wanting to hide them away in a cupboard, the better these routers will actually work! But as with all things design wise, this can be hugely subjective. What appeals to the eye of one consumer might cause another one to immediately look away. 

For a mesh network to be effective, the units need to be spread about the home if you want to get the best Wi-Fi coverage. The previous Nest Wi-FI units have a soft, matte finish which some would argue makes it easier to blend in with other decor and not stand out too much. 

The Google Nest Wi-Fi Pro however, has a glossy finish that very much says ‘look at me’ – These are not meant to be hidden away! If you like the look of them and don’t mind making them a feature in your rooms then it’s all good. If you were hoping to let them lurk in a corner out of sight, that might be harder to do with these new units. 

It’s also worth noting that these Google Nest Wi-Fi Pro units don’t come with any mounting hardware, so if you were hoping to mount them to the wall or ceiling that might be rather difficult. On the plus side, they do have a rubber base so they’re unlikely to move around wherever you do place them. 

Does the Google Nest Wi-Fi Pro have Ethernet Ports?

We’ve just talked about the aesthetics of the Nest Wi-Fi Pro, and the lack of Ethernet ports fits into this. The design is minimalistic, hence why there are only two ethernet ports on these units. Of course, you could just add in a switch if you need more, but if you are picking the Nest Wi-Fi Pro based on it’s looks, then adding in a switch and hard wire might detract from the image you are looking for. 

This might not be a problem for many homes – Not many products need to be wired to the router and this device will be much faster than what has come before. However, if you have a security camera for example, you might find that it needs to be hardwired to the router via a hub.

The ports only support gigabit speeds which is a bit of a shame. 2.5GbE is becoming more common in order to offer the best possible speeds between wired and wireless. 

If you really need a router with plenty of Ethernet ports, then the Nest Wi-Fi Pro possibly isn’t the one for you – But worry not, there are other mesh routers available. 

What about Wi-Fi 7?

We know, we know, we’re only just getting to grips with the latest wireless standard Wi-Fi 6E. But Wi-Fi 7 is hot on its heels (as with all new technological developments – There is always something waiting in the wings). 

Wi-Fi 7 is set to arrive at the start of next year, offering consumers even faster internet speeds up to a possible maximum data rate of 5.8 Gbps. That’s more than double what Wi-Fi 6E has to offer! Amazingly, Wi-Fi 7 is set to feel like you’re using an Ethernet connection in terms of speed. That’s pretty impressive.

So whilst the Google Nest Wi-Fi Pro future proofs your network in terms of Matter and Thread, it won’t be compatible with Wi-Fi 7. The next Google development will likely take a few more years, so if you’ve already got a new router or your current Google Nest Wi-Fi is working well for your home then it might be worth waiting for the next Nest Wi-Fi Pro after this one. 

The Google Nest Wi-Fi Pro isn’t Backward Compatible

We all feel a bit more secure in making an upgrade if we know that the new device is backward compatible. We know that our other, older devices are safe and will still be able to function. This was true of the previous upgrade from Google Wi-Fi to Google Nest Wi-Fi. Unfortunately, the latest upgrade to Google Nest Wi-Fi Pro will not be backward compatible, which means that your current/previous units (routers or points for example) won’t be compatible with this new one so you won’t be able to combine the two. 

Whilst this may feel quite frustrating, if you’re considering buying a new mesh router anyway then this could be an ideal opportunity to replace what you’ve got to a completely new network that will offer you faster and more reliable internet as well as future proofing it for imminent Wi-Fi standard updates like Matter and Thread. 

Alternatively, the fact that you can’t link older products with the new might prompt you to buy a new mesh system altogether – Perhaps an Amazon offering to fit with your Alexa! 

Google Nest Wi-Fi Pro – The Verdict?

As we’ve discussed above, there are many pros and cons to consider when thinking about purchasing the latest Google Wi-Fi device. The final verdict really comes down to you and what your network demands are. 

Will this mesh network device work for you and your home? 

Wi-Fi Smart Home Standards: What is Matter?

Last week we blogged about Google launching their Nest Wi-Fi Pro – And we mentioned that this new device would be Matter compatible. 

If you keep up with all the latest gadgets and gizmos and pride yourself on your smart home then you’ll have probably been hearing quite a bit about Matter. Especially from the likes of Google, Amazon and Apple. 

If you’re keen to keep your smart home updated with up to date tech and new features, then you might be eager to upgrade to Matter compatible devices.

But what exactly is Matter when it comes to Wi-Fi? And do you need to be rushing out to buy the latest smart home tech to future-proof your devices?

What is Matter in Wi-Fi?

Essentially, the aim of Matter is to provide a protocol that offers interoperability across different ecosystems, offering standard data models for smart home devices. 

If you’re reading this, then it’s likely you have a smart home or are intending to ‘smarten up’ your home with some of the latest gadgets. Think smart bulbs for your lighting, heating controls, TV, music, etc. You’ll also likely have a Google Home, Amazon Alexa, or Apple HomeKit – Which means when you buy smart home devices, you’re checking if they’re specifically compatible to your smart assistant. Is this smart bulb compatible with Alexa? 

In essence, this newly-launched networking protocol – Matter – will ensure that all your smart home accessories work across all the smart home platforms. Or major ones at least. Instead of having to check if something is compatible with Google Home, all you’ll need to do is check for the Matter label. 

You do need to bear in mind however that depending on the platform of your choice, you may need to wait for software updates to enable Matter. 

But what actually is it? What is Matter? Matter is an IP based technology, formerly known as Project Chip (Project Connected Home Over IP). Using Matter, it’s possible to create a mesh network which doesn’t need to connect to the cloud. This means that whether or not your smart accessories connect to the internet or have a hub, if you are physically there in the home then you should be able to ‘turn the lights on’ with Matter and it work with as little as your phone. 

Where we have connective technologies such as Ethernet, Wi-Fi and Bluetooth, Matter operates as an application layer on top. This makes mesh functions possible. 

Is Matter a big deal for Wi-Fi and smart homes?

As we intimated above, when you’re shopping for a smart home device or accessory it can all seem a little bit fractured. Does Alexa support this device? Is this accessory compatible with Google Home? 

Whilst many devices and accessories cross over and work with various platforms, that isn’t always the case and we definitely need to be checking compatibility before making a purchase. 

When you’re shopping for a smart home platform, device or accessory, the ones you want might not all marry up. You might love the features of one platform, but not be as impressed by the accessories on offer and the specs of compatible devices available. And that can feel pretty frustrating. 

This is where Matter will be really handy for the smart home industry as a whole – For you as a consumer as well as the smart home manufacturer. 

Matter will mean that you will have a wider range of product options, as well as more reliable connectivity within your home. And that’s a huge thing. 

If you have a smart home, you will likely have smart devices and accessories located all over the house in different rooms – Maybe even outside! If these locations don’t have a strong, reliable signal then you’ll find your devices ‘dropping out’. If you have a home jam-packed full of smart devices then you could even find that your router is overloaded and the Wi-Fi doesn’t work as effectively. Although this is unlikely with Wi-Fi 6, you don’t want a smart home full of devices that can’t work effectively due to the Wi-Fi. 

But accessories using Matter, particularly on a Thread network, helps reduce these connectivity problems. 

Which manufacturers will be compatible with Matter in the UK?

The body behind the Matter standard is the CSA (Connectivity Standards Alliance). Amongst the members of this alliance, you will find the big players of the smart home world like Google, Amazon, Apple and Samsung. 

Google seems to be leading the way when it comes to Matter compatibility here in the UK. As we mentioned in last week’s blog, Google is already launching their Matter compatible device through the Nest Wi-Fi Pro. 

We fully expect others to fully suit very soon, with the tech world eagerly awaiting the necessary software updates by the end of this year. 

Next year we will start to see the tech world pick up the pace with device development to match the Matter spec, with the launching of more and more Matter compatible accessories. 

If you can’t envisage your home without it’s smart element and worry about Wi-Fi coverage disrupting your smart home functionality, then Matter could give you the peace of mind you’re looking for to keep those concerns of operating things without internet at bay. 

Whilst Matter compatibility would future-proof your devices, if you’re happy to choose current devices and accessories that are compatible only with your chosen platform then they will continue to work just the same even once Matter is available. 

We’re excited to see what Matter will have to offer the smart home industry!