SpeedScore by Geekabit

Your internet speed has never been so important. Connectivity is as important as electricity, water and gas to a home or business. Decisions are made based on the speed you can offer, yet connectivity is often overlooked until it’s too late.

House buyers, tenants, hospitality customers and even employees are getting more tech savvy and starting to ask questions about internet speeds and reliability.

With a decade of providing connectivity solutions to UK markets, we have launched our innovative Internet Connectivity Measurement Platform.

SpeedScore by Geekabit gives you a variety of tools to help provide an independent certification of your internet speeds and connectivity.

Most internet speed tests are not accurate, as they become affected by the use of Wi-Fi, old devices and different test endpoints. You can’t expect them to provide the same results test after test due to a variety of factors.

Our hardware and software is different, resolving these issues and providing a balanced and independent view. We have no affiliation with any connectivity provider or hardware manufacturer, allowing us to create a truly impartial scheme based on scientific measurement and reporting.

Who is SpeedScore for?
Perfect for Estate Agents looking to prove internet connection speeds in properties for sale, landlords looking to provide accurate broadband measurement for potential tenants, and hospitality hosts giving confidence to those looking for a connected stay.

What does SpeedScore include?
The core platform consists of the SpeedScore ConnectBox – plugged directly into your broadband router (available for purchase or hire) and the SpeedScore Platform and App. You can show live scores within your own online marketing, provide exportable reports and download certificates to provide an independent and balanced view from our experts.

Prove your internet speed and connectivity status, when and where you need it with SpeedScore by Geekabit.

We have limited availability for the first rollout of our platform, and are looking for a final few customers for our initial shipping batch. If you would like to take part, please email .

Ubiquiti Wi-Fi Expert Help

Here at Geekabit, we love Ubiquiti – It’s no secret. We’re often asked what bits of Wi-Fi kit are our favourites, and Ubiquiti is definitely one of them. We use Ubiquiti wireless devices so much that we consider ourselves a bit of an expert when it comes to Ubiquiti Wi-Fi installations. We’ve done quite a few blogs sharing our expert knowledge of Ubiquiti Wi-Fi devices, so this week we thought we’d do a quick round-up on some of the things we’ve touched on.

Let’s start with how Ubiquiti UniFi could help your business. This blog was the first in a series of three looking at the benefits of Ubiquiti UniFi in a business setting. If excellent, reliable Wi-Fi is critical to your business operations, then this is well worth a read.

[Part 1] What is Ubiquiti UniFi and How Could It Help Your Business?

In the above blog, we looked at what Ubiquiti UniFi actually was and how it could function as a network in your business. This next one focuses in on the Controller and UniFi Cloud Key and their expert Wi-Fi function within an effective wireless network.

[Part 2] Ubiquiti UniFi – The Brains

The third in that series of blogs looked at the elements that complete the Ubiquiti UniFi network and how they could provide you with a better connected business. After the last 18 months, we’ve all seen how vital it is to have a reliable connection. This series of 3 blogs on Ubiquiti UniFi highlights how these interconnected devices could be the ideal solution for keeping your business well connected.

[Part 3] Ubiquiti UniFi – The Elements

Ubiquiti Access Points are a staple in our Wi-Fi toolkit. We’re confident that their selection of access points are straightforward to match to our clients needs and satisfy your end users. For a blog that takes you through choosing the right Ubiquiti access point for your business, check out the link below.

How Do I Choose The Right Ubiquiti UniFi Access Point?

Of course, Ubiquiti isn’t the only provider out there. How does it compare to some other top options on the wireless device market? See how it stacks up against popular choices from Meraki and Aruba.

UniFi vs Meraki vs Aruba

With all the Wi-Fi 6 hype, you might be wondering what the choices are in terms of Ubiquiti Wi-Fi 6 products. In that case, you’ll probably want to have a read about the Amplifi Alien – The new Wi-Fi 6 router from Ubiquiti.

Amplifi Alien – The New Wi-Fi 6 Router from Ubiquiti

If you have a large area to cover with your network range, then mesh could be the right option for you. Mesh is essentially like a interconnected grid or net of access points that all communicate with each other, ensuring that even if one goes down you don’t drop your connection. If this sounds like something that could work for your business Wi-Fi network, have a read of the blog below explaining Ubiquiti UniFi Mesh models.

Ubiquiti UniFi – What are Mesh and Mesh Pro Models?

The latest from our Ubiquiti blogs is the range of Ubiquiti airMAX products. With something to match every business Wi-Fi need – from a functional perspective to design aesthetics – This blog will take you through the Ubiquiti airMAX device choices.

Which Ubiquiti airMAX product should I choose?

If you need Ubiquiti Wi-Fi expert help then give us a call here at Geekabit. Our Wi-Fi experts operate out of London, Hampshire and Cardiff and are all competent in Ubiquiti wireless devices.

To get in touch, give us a call or drop us a message.

 

What’s Different About Wi-Fi 6?

Wondering what all the fuss is about when it comes to Wi-Fi 6? If you’re questioning what the differences are and whether it’s worth making hardware device changes, then read on.

The next generation of wireless standard is here (actually, it’s been here since the end of 2019). Wi-Fi 6, or 802.11ax has the following main differences:

  • It’s faster
  • It provides better performance in congested areas (think anything from your own device-packed home, to stadiums)

We know it informally as Wi-Fi 6 – Wi-Fi versions have now been assigned simple numbers to replace the more complicated code-like names that we saw before.

What are the Wi-Fi Version Numbers?

The new Wi-Fi version numbers are much more user friendly, but for the fellow geeks among us, here are what the new version numbers correspond to, plus (whilst not being officially branded) what all of the old versions would have been.

Wi-Fi 1 – 802.11b (released in 1999)

Wi-Fi 2 – 802.11a (also released in 1999)

Wi-Fi 3 – 802.11g (released in 2003)

Wi-Fi 4 – 802.11n (released in 2009)

Wi-Fi 5 – 802.11ac (released in 2014)

Wi-Fi 6 – 802.11ax (released in 2019)

You might start to see these newer version numbers appear in software when connecting your smartphone, tablet or laptop, to enable you to see which Wi-Fi networks are newer and faster. This is what the Wi-Fi Alliance announced that they would like to be seeing across networks. It’s worth noting that it isn’t mandatory for manufacturers to label their products with Wi-Fi 6 instead of 802.11ax, but we’re hopeful that most will. Re-naming products from 802.11ac to Wi-Fi 5 might be another matter though!

Wi-Fi That’s Faster

As with most technological advances, the latest development in Wi-Fi standard is faster in terms of data transfer speeds. In comparison to Wi-Fi 5, a Wi-Fi 6 router would provide one device with up to 40% higher speeds.

What Makes Wi-Fi 6 Faster?

The reason Wi-Fi 6 can achieve such faster speeds is due to more efficient data coding which thus results in higher throughput. Basically, the radio waves are packed with more data. With each Wi-Fi standard, the ability for the chips to encode and decode the data gets more powerful, hence why Wi-Fi 6 is faster than Wi-Fi 5, and can handle extra work.

You may be aware that we have 2 frequenceis used for networks – 5GHz and 2.4GHz. 5GHz is more commonly used as it is subject to less interference, however 2.4GHz is still a good option for being able to penetrate solid objects. Wi-Fi 6, the new standard, even increases speeds on these 2.4GHz networks.

How Will Wi-Fi 6 Affect the Battery Life on my Device?

Many Wi-Fi 6 enabled devices will have a new ‘target wake time’ feature. This means that an access point can define a specific set of times when devices connected to the internet need to have access to the wireless network. This new efficiency should mean that your Wi-Fi enables devices should have a longer battery life.

Let’s take your smartphone, for example. When the AP is talking to your phone, it can tell it when to put it’s Wi-Fi radio to sleep and when to wave it up to receive the next transmission. Because your device can spend more time in sleep mode, you should find your battery lasts longer.

It also means that devices that connect via Wi-Fi with lower power can benefit from longer battery life.

Wi-Fi That Performs Better in Crowded Areas

We know there hasn’t been much opportunity for it as late, but picture trying to get online at an airport, hotel or live event at a stadium. When an area is as congested with devices as these, you can suffer with slow Wi-Fi and even struggle to connect.

Wi-Fi 6 tackles just this problem. With new technology, superior to previous Wi-Fi standards, it’s purported that Wi-Fi 6 will improve the average speed of each user by at least 4 times. Even in crowded areas with lots of devices.

This isn’t just something that will benefit you when out in public places – It could be a huge help in your home as well. If you have a large family all with multiple devices connected to Wi-Fi, then this could be just the solution to stop the slow-down. Or perhaps if you live in a densely populated place, like a block of flats.

How Does Wi-Fi 6 Tackle Congestion from Multiple Devices?

There are various features that help Wi-Fi 6 better tackle the problem of heavily crowded networks. Just knowing that a Wi-Fi 6 device connected to a Wi-Fi 6 access point will work better may well be enough for you!

For those who want all the geeky details, here’s what’s going on to make Wi-Fi 6 better for networks with multiple or many devices.

Wi-Fi 6 technology is able to create a large number of sub-channels within one wireless channel. Date intended for each individual device can be carried by each sub-channel. This technology is called Orthogonal Frequency Division Multiple Access (OFDMA). Essentially this means that a Wi-Fi 6 enabled access point can talk to more devices at once.

Wi-Fi 6 also has improved MultipleIn/Multiple Out (MIMO). Again, this lets the access point talk to multiple devices at once through multiple antennas. The difference between this and Wi-Fi 5, is that while the latter enabled an access point to talk to multiple devices at the same time, it couldn’t allow the devices to respond at the same time, thus slowing things down. The new improved MIMO on Wi-Fi 6 is a multi-user version (MU-MIMO) which enables devices to respond to the access point at the same time.

Let’s look at another potential scenario. Wireless access points that are locating close to one another may transmit on the same channel. This means that the radio needs to listen and wait for a clear signal before it can reply. Wi-Fi 6 uses spatial frequency re-use which allows you to configure Wi-Fi 6 wireless access points with different Basic Service Set (BSS) colours, which consists of a number between 0 and 7. The device can then determine whether a particular channel has a weaker signal, and thus ignore it and transmit without waiting. This is another way in which Wi-Fi 6 will improve wireless performance in congested areas.

These are just a couple of the improvements to be seen from the new Wi-Fi 6 standard. There are many more, smaller enhancements which will improve the speed and performance with Wi-Fi 6.

How Do I Know If Something has Wi-Fi 6?

Luckily, thanks to this handy article, you’re now familiar with all the technical names of the different Wi-Fi standards, so you’ll know exactly what to look for. Right? Don’t panic! We’re only kidding. Thanks to the new versions, it’ll be easy for you to find devices that are certified Wi-Fi 6 (rather than hunting around for 802.11ax!). Device manufacturers are able to say whether their product is Wi-Fi 6 or Wi-Fi 5.

You may also start to see a logo saying ‘Wi-Fi 6 Certified’ on relevant devices. This means that the product has gone through the Wi-Fi Alliance’s certification process. The old Wi-Fi Certified logo simply told you it was Wi-Fi Certified, rather than what generation of Wi-Fi a product was. The new logo will make it clear if it is Wi-Fi 6. So there will be no need for trawling through product specifications!

When Can I Get Wi-Fi 6 Enabled Devices?

The new Wi-Fi 6 standard was finalised in 2019, with hardware being released in the latter part of the same year and into 2020. So you should be seeing Wi-Fi 6 enabled products in the market now. It’s shouldn’t be something you need to put too much thought into – As new routers, smartphones, tables and laptops are released into the market, they will just start to come with this new Wi-Fi 6 technology.

It’s worth remembering that to benefit from the improvements on the new Wi-Fi 6 standard, you need both the sender and receiver devices to support this latest generation of Wi-Fi 6. Whatever the connection, it will only operate in the mode that your device supports. For example, you may have a Wi-Fi 6 enabled router, a Wi-Fi 6 enabled smartphone, but a laptop that only supports Wi-Fi 5. You’ll see the advantages of Wi-Fi 6 on your smartphone, but the laptop will only work at Wi-Fi 5 capacity.

WiFi Faces Technical Challenges

The emerging wireless standard promises better WiFi but the promise introduces significant complexity.

IEEE 802.11 standards (g, a, n, ac) delivered WiFi performance improvements out of the box. They focused on progressively increasing the data rate over the wireless link. All that was needed to take advantage of any new standard, was a radio chipset that incorporated the new radio and MAC enhancements.

The situation is different for the upcoming 802.11ax standard. The focus of 802.11ax is not on increasing the data rate but on improving the overall wireless network performance. This introduces significant new radio and MAC enhancements such as OFDMA and BSS colouring.

Ranking high among the issues is a transmission-scheduling mechanism. The downlink transmission scheduling in WiFi has been a simple FIFO (First In First Out) system. 802.11e introduced a small variation regarding the maintenance of multiple transmission queues for different priority classes.

However, 802.11ax introduces significant complexity in wireless transmission scheduling due to its OFDMA and MU-MIMO enhancements.

  •  With MU-MIMO, there is now an option to transmit a single wireless frame to a single client or concurrently transmit different wireless frames to multiple clients using multi-user beamforming.
  • With OFDMA, there is now an option to transmit a single wireless frame to single client using traditional OFDM or concurrently transmit different wireless frames to multiple clients using subsets of channel width.
  • 802.11ax introduces multi-user transmission in uplink direction too. The AP needs to schedule multiple clients for concurrent uplink transmissions according to their requirements.

These methods need to take into account service requirements of traffic flows, radio conditions on the channel, client capabilities and client state feedbacks. It is no easy feat to come up with scheduling mechanisms that will work in most practical scenarios with relative ease of configuration and fine tuning.

Wi-Fi Frequencies: An Overview

With all of the current and future Wi-Fi frequencies and technologies are really getting confusing, with that in mind theres actually more than you realise. So let’s take a look at what’s out there and what’s coming up, as well as trying to make it as simple as we can.

There are two common well known dominant Wi-Fi frequencies used by 802.11a/b/g/n systems, 2.4 GHz and 5 GHz. Almost all modern Wi-Fi devices are made to operate in one or both of these frequencies. These frequencies now dominate most of our homes.

The same basic OFDM technology used by 802.11a in 5 GHz is also used in a 4.9 GHz public safety band. This band is 50 MHz wide it requires a license and is only available in some regulatory domains. There are specific and limited purposes for this band so you won’t see a lot of commercial interest or attention here.

The FCC also opened up 50 MHz of bandwidth in a 3.6 GHz licensed band. OFDM is used here as well. In the US this band requires a license but usage is not limited to certain technologies, so the band will be shared.  There aren’t many benefits to this frequency band and the interference avoidance requirements represent a moderate R&D requirement without much ROI.

You’ve most likely heard about this PHY spec in development. It builds on 802.11n MIMO technology in 5 GHz and seeks to expand on the HT PHY with a few developments that are a natural next step. 802.11n gave us 40 MHz bonded channels. 802.11ac will give us 80 MHz channels and, likely, 160 MHz channels.. 80 MHz bandwidth will get us past the gigabit rate threshold. MIMO will also be expanded to 8×8, but since client devices aren’t adopting that type of power hungry radio anytime in the near future (or ever), 8×8 will be used for MU-MIMO. MU-MIMO allows an AP to transmit simultaneous downlink frames to multiple users (MUs).

VHT 60 GHz (802.11ad) — This PHY opens up a fresh use case for Wi-Fi in the form of very high throughput at short range. There are a lot of challenges getting the kind of range that would be useful to enterprises. We’ll see short-range, high bandwidth applications, but there are still failings to see the exciting benefits that have been touted in the press.

White-Fi (802.11af) — The TV whitespace frequencies between 50 and 600 MHz have also created some exciting buzz in the past several months. There are many articles out there discussing the limitations and benefits of this band. The main issue with this frequency is that contiguous bandwidth is in short supply, so we see a handful of 6 MHz-wide channels, which will yield lower transmission rates than 802.11a/g. The merits of a low frequency are fairly well known; that is, despite the throughput-deficient bandwidth, the range and coverage is advantageous. Rural broadband applications are the evident winner with this technology where coverage is more important than bandwidth and high user density.

It is also worth mentioning 900 MHz. Back in the 1990s, 900 MHz was a popular pre-802.11-Wi-Fi frequency. It is an unlicensed ISM band. This is a semi-popular broadband frequency with decent range and limited throughput. Many vendors use proprietary PtP and PtMP solutions here for wireless distribution, but they are not defined by 802.11 and they are not designed for client access.

Wi-FI frequencies in brief:

  • 50-600 MHz TV Whitespace — Good range, low capacity.
  • 900 MHz — Proprietary PtP and PtMP. Decent range, slow rates.
  • 2.4 GHz — Well-known and used.
  • 3.6 GHz — Little-used, licensed band.
  • 4.9 GHz — Licensed public safety band.
  • 5 GHz — Well-known and used, the future of Wi-Fi.
  • 60 GHz — Short range, very high throughput.
Siklu EtherHaul-2X00 Series

1 Gbps connectivity between two sites is sometimes necessary and an E-band set of radios that work within a 70-80 Ghz frequency is a viable solution.  The benefits of these radios are vast and varied.  Being relatively cheap makes them popular and this coupled with the fact that they are easy to deploy and manage makes them a Wi-Fi winner.

Siklu have created a solution in an E-band set of radios that will provide 2 Gbps connectivity over up to 7kms.  This wider channel width solution is able to work at lower modulations which makes it a great option compared to others on the market.  The EH -2X00 delivers 2Gbps full duplex point to point wireless connectivity making it robust and futureproof.

Being small in size, the tiny footprint allows easy site acquisition and an easy installation.  Moreover, the E-band spectrum is uncongested and offers a quick licensing process compared to other options.  Spectrum protection is maintained whist the cost is still relatively cheap.

The EH-2X00 series offers a great price per MB but alongside this its lower installation costs make it unbeatable in price.  The new model is based on an evolved version of a Siklu’s field proven platform making it extremely reliable.  This reliability cuts the cost of site visits which contributes to its exceptional value for money.

With 16 non-overlapping channels available to it, the EH-2X00 is able to deploy dense networks over greater distances and offers a great solution for those looking for 1Gbps between 2 sites.

Coffee shop cyber-security – how high is the risk?

It’s fair to say that the media has a way of taking an idea and running with it, which can often create hysteria.  This week we’ve been reading a lot of stories about internet security in public spaces and have been questioning the findings.

 

Ipass have just published their 2017 security report and the findings have been interesting.  Coffee shops have been flagged up as public networks where hackers can most easily access other people’s data.  The findings stated that CEO’s present the greatest security risk to businesses as they are often working remotely and therefore connect to public wi-fi which could pose a risk.  Of course, CEO’s are in possession of valuable information and so the risk to a business could be colossal. Interestingly, the report states that many organisations have stepped up their security measures and don’t allow employees to connect to public networks due to concerns about internet safety.

 

These findings have not only raised questions for businesses but have also raised questions about our everyday safety and how reliable public wi-fi really is.  However, there are ways to ensure that you are always secure.  VPN’s can help to create a safer connection by encrypting information travelling to and from a device.  Using a VPN can inhibit these attacks and keep your information safe so we thoroughly recommend looking into that as an option.  The reports are interesting and raise valid points about cyber security.  However, it’s always worth bearing in mind that there are ways to reduce your risk.  Get in touch to find out more!

 

Read the full report here:

https://www.ipass.com/wp-content/uploads/2017/05/iPass-2017-Mobile-Security-Report.pdf

Battle of the best connection

This week, our interest in maintaining incredible internet connection has lead us to finding out which countries Wi-Fi is performing best.

 

And the results have been interesting…

 

Rotten Wi-Fi’s latest findings show that the UK is surprisingly quite far behind other countries in terms of interest speed.  Public Wi-Fi has become a pretty essential part of everyday life for most of us and the demand has certainly increased in recent years.  Interestingly the UK falls behind countries such as Lithuania and Switzerland when comparing the average download speed.

 

Although we do come in behind Lithuania, Singapore, Denmark and Switzerland in terms of internet speed, we are placed ahead of the USA and Germany.  In fact, the USA and Germany haven’t been doing so well in recent years and their internet speed hasn’t made the top 20 until this year.  The latest findings show that countries such as Latvia, Hungary and Estonia are still ahead of Germany and the USA in terms of download speed.

 

Lithuania tops the charts with the fastest public Wi-Fi, followed closely by Denmark.  Fast and effective public Wi-Fi is hugely important in the modern day and we’ll be interested to see if the UK can develop their Wi-Fi speed to keep up with the demand in the coming years.
Data source: www.rottenwifi.com; November 2016

Image Credit: Alto Digital

Dreaded Dead Spots

We’ve all been there.

 

You’ve set out to do some work in a coffee shop and after ordering your coffee and finding the perfect corner to settle down in you realise the Wi-Fi doesn’t work there.  ‘Typical’ you think as you pace around with your device in hand trying to find a connection.

 

This week we’re trying to discover what it means to have a Wi-Fi dead spot and how to avoid these cursed spaces.  

 

There can be so many reasons for these dead spots but the main ones are building interferences ie – thick walls or awkwardly placed Wi-Fi access points that can’t reach certain areas.  With that in mind, it can be quite easy to fix these mysterious dead spots which makes it all the more frustrating when you come across one.

 

If you find a dead spot in your home or business space the first thing you can do to try and close up these dead spots is to re-position your access point.  Often central locations suit access points best, where they can get away from thick walls or fire exits which can all interfere with signal.   

 

That brings us to our second suggestion – removing obstructions and ensuring that your access point is free of any interference.  Often clients don’t realise how easy it can be to eliminate these obstructions from the area.  If you identify anything near the access point that you think could be causing problems then remove it and see if the dead spot remains – in most cases dead spots require a trial and error approach. Other electronic devices and thick metals can be a source of interference that often go overlooked but it’s worth getting to the bottom of the issue and ensuring that you try removing as many obstructions as possible to see if that affects the dead spot.
If you need more advice on how to avoid these frustrating dead spots then don’t hesitate to get in touch.  It’s always helpful to get an expert opinion if the problem persists.

Wearables wreaking havoc

This week at Geekabit we’re talking about wearables.

Wearables are the newest fitness craze and it seems that social media is full of people uploading their data.  Everyone is tracking their heartrate and their steps these days and we’re not complaining.  Wearables are a great advance in technology that can benefit health so we’re all for the latest craze.

However, we are not for the congestion that has inevitably increased since wearables became a ‘thing’.  Wearables are often Wi-Fi enabled, however ones that aren’t can really cause problems since the Bluetooth that they operate off of uses the same 2.4Ghz frequency as most Wi-Fi services.

The initial cause of disruption is just the fact that people have gone from having one device to having two or three which puts pressure on the network.  Not only that but as we previously mentioned, there is the danger that your 2.4Ghz band will get congested by wearables operating using Bluetooth.  As people become more and more attached to their wearables and start to take their data seriously, it is becoming hugely important to have a Wi-Fi service that can handle the demand.

Luckily we know a few tricks that can help solve these issues and make sure that your customers don’t get frustrated by the congested W-Fi.  An easy way to solve the congestion is ensure that fewer devices are operating on the network, as every device is using up bandwidth.   It might pay to get a separate network for personal use or for employees if your network is based in a place that is used by both customers and employees.  As always with these things, a survey is a great idea.  A Wi-Fi survey will tell you exactly what is going on with your network and how much it can take vs what pressure is being put on it.  This is hugely helpful to any business experiencing Wi-Fi problems which have potentially come about by increased pressure on the network from wearables.

If you think that your network is being affected by  wearables then don’t hesitate to contact us to gain some useful advice on how to solve these issues.