Why Is Network Design So Important for Reliable Business Wi-Fi?

Wi-Fi is no longer a ‘like to have’ when it comes to successful business planning. It’s vital for businesses to have strong, reliable Wi-Fi in order to business processes to run smoothly.

No matter what industry your business is in – Wi-Fi is crucial. Gone are the days when everything could be wired and cabled. Whether you run a warehouse, a hospital or operate out of an office; Your business needs to run wirelessly.

Organisations tend to have an armada of laptops, tablets, smartphones and other IoT devices that require effective Wi-Fi.

So if the need for a good Wi-Fi connection is so prevalent, why are we still seeing so many businesses struggle with their Wi-Fi network?

The requirements can be demanding, and to be successful a network needs to meet those demands. Plug-in-and-go routers aren’t going to cut it unfortunately. Your business network needs more!

So how can you ensure that your network can be relied upon by your employees every day, so they can do their job productively and efficiently?

It all comes down to the design.

What do you need to consider when designing a Wi-Fi network?

Designing your wireless network gives you the chance to translate your business needs into a Wi-Fi network that will work for you and meet those needs.

So what do you need to consider?

Capacity

You need to think about how many devices will require a Wi-Fi connection. You need to be asking questions like how many employees you have, are there people in addition to employees that will need to connect, how many devices are each of these people likely to have and what type of device are they.

Getting to know how much traffic you will likely have will help you to determine how much bandwidth you need in order to meet consumption needs.

If you don’t get the capacity planning right, you could end up with very unhappy employees suffering with slow internet speeds and an intermittent connection. Neither are conducive to a productive work environment!

Something else to consider is how the capacity changes as you move around your site. Do some locations have a higher capacity demand than others? This information will help you to design a network where access points are distributed according to requirements.

Capacity isn’t just important during the planning stage either. It’s something you will need to monitor so that you can identify when more devices are trying to connect and adapt the network accordingly.

 

Coverage

We’ve talked about capacity and how many devices are likely to connect. Now it’s time to talk about where those users need that connection.

Identifying your coverage area allows you to optimise the distance between your wireless transmitters. Getting this right means that you’ll have the right signal strength for the Wi-Fi enables devices trying to connect.

Coverage is split into two – Primary coverage and Secondary coverage. Interweaving the primary coverage area of your transmitters with the secondary coverage of necessary overlaps means that your end users will be able to roam throughout your site without their connection dropping out on their device.

The idea is to find the perfect balance in the number of AP’s you deploy. Too many AP’s not only costs you more money on installation but can also cause interference. Not enough AP’s and you won’t be able to meet your coverage needs.

 

What is the Least Capable, Most Important Device?

It’s important to identify what device is most business critical – And whether that device poses a risk to the rest of your network. You might find that a warehouse scanner, or even an employees laptop, is critical to the needs of the business, but is also the oldest and least technologically advanced device on the network.

You need to identify this device (or devices) and make sure that your network will ensure the device(s) stay online. You can do this by checking the manufacturer specifications and make sure these align with your network offering.

 

Are there any Obstacles on site?

It’s a good idea to walk around your site and identify any potential obstacles to your wireless signal. Sometimes having an actual walk-around sheds more light on potential problems than just looking at a simple floor plan. You need to know exactly how the radio frequency will behave in your specific environment.

Consider things like high or exposed ceilings, columns, large items of furniture, lift shafts, stairwells and even signage.

You should also look to see where access points could be easily installed, and any areas where this would not be possible. This also goes for cabling.

Mitigating the Effects of Wall/ Door Material on Signal Attenuation

In order to mitigate the risks of attenuation, you need to understand what materials could pose a problem to your Wi-Fi signal.

When you are designing your Wi-Fi network, it’s imperative that you identify the physical characteristics of your environment and understand how this can impact your wireless signal.

The amount of signal strength absorbed by walls or doors depends on what they are made from. A rough guide to this would be:

  • Bookshelf – 2dB
  • Drywall – 3dB
  • Exterior Glass – 3dB
  • Solid Wood Door – 6dB
  • Marble – 6dB
  • Brick – 10dB

Having this information specific to your site means you can design a wireless network that works really well.

Call the Experts

If this all seems a bit overwhelming, then call in the experts. That’s what we’re here for! We have all the necessary technology to survey your site and then design and plan a wireless network specific to your business needs. Give our Wi-Fi experts a call today to see how Geekabit can help.

 

Wi-Fi Woes at Home: Could it be your Router?

Wi-Fi is one of those things that we don’t tend to take much notice of – Until it breaks.

Just like when a power-cut stops our electric, or cloudy water comes out the tap – When our Wi-Fi goes down, we notice! Slow or faulty internet might be one of the most frustrating things of all time. There’s nothing quite as annoying – Whether you’re in the middle of a Netflix binge or an important Zoom meeting.

The last time you thought about your internet probably coincided with one of those moments. Maybe it was back when the first lockdown came in and you were suddenly thrust into a world of remote working. Or when schools were closed and you abruptly and unexpectedly became a teacher and had to navigate an online classroom with your children.

Never have we had to rely on our home Wi-Fi networks like we have the last 2 years. The world still looks like a bit of a scary place right now – Don’t let your home network be an added source of stress.

We might have electricians to sort out our electrics and plumbers to sort out our plumbing – But who sorts out our Wi-Fi in our homes? Here at Geekabit, our Wi-Fi experts are here to help you. Most people get sent a router from their broaband provider, plug it in and hope for the best (no judgement here!). But what about when that’s not enough to provide you with a reliable home Wi-Fi network?

We’re going to take you through the basics of Wi-Fi so you can make sure your router is providing your home with the network you need.

So let’s start from the beginning.

Wi-Fi Standards – What are they?

What we understand as Wi-Fi was only named that after the ability for us to connect to other computers and the internet has long been around.

It started out as 802.11 (The first Wi-Fi standard). Not quite the description you’d expect for such a transformative piece of technology! And certainly not a word that lends itself to the general population of internet users.

So what came next? Along came 802.11b (there was a 802.11a but we won’t go into that). Catchy huh! This was the first major revision of 802.11 which came in 1999 alongside the name Wi-Fi. These numbered standards come from the Wi-Fi Alliance – A global group of technology companies who ensure that anything labelled as a Wi-Fi product has been adequately tested as such.

This means that if you buy a product with Wi-Fi, such as a laptop, and you have a functioning Wi-Fi network, then the 2 will be able to connect. That’s the rule!

In the 20 years since we’ve had more revisions and improvements, taking us through more standards: 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax. They don’t exactly roll off your tongue do they?

What they have done however, is:

  • Increase the maximum speed
  • Minimise congestion in built-up areas
  • Improve connections when multiple users on different devices are accessing the same network

Wi-Fi Standards and Compatibility

What these complicated names also mean is that even the most technological savvy people don’t have much knowledge about how their home Wi-Fi network actually works. Again no judgement – It’s not your fault!

Without Googling or hunting down hardware – Do you know which of the standards above your home network supports? How about your laptop, tablet or smartphone?

Without also knowing what standard your router runs on, how could you know whether the standard your devices are running on is compatible?

Backward compatibility has its costs. If you have a new router running on the latest standard of 802.11ax, but your laptop is 20 years old with 802.11b compatibility, the laptop can only go as fast as the old standard. It can’t access the benefits of the newer standard that the router supports. Unfortunately, having this laptop connected to the network can cause the whole Wi-Fi system down to its level. For this reason, the default settings on many networks automatically kick off any older devices to stop problems arising for other users.

For this reason, it’s wise to make sure that the Wi-Fi standard that is supported, is common amongst your router and the devices connected to it.

The re-branding of Wi-Fi Standards

Thankfully assessing compatibility will become a lot easier now that the Wi-Fi Alliance has rebranded the Wi-Fi standards.

You might be surprised to find that you are already acquainted with the latest Wi-Fi standards – Wi-Fi 6 and Wi-Fi 6E.

With the branding of these newest standards, comes the relabelling of the older ones. They become:

  • 11 – Wi-Fi 1
  • 11b – Wi-Fi 2
  • 11g – Wi-Fi 3
  • 11n – Wi-Fi 4
  • 11ac – Wi-Fi 5
  • 11ax – Wi-Fi 6

The ones we need to know about and look out for are Wi-Fi 5 and Wi-Fi 6. Simply put – Your home Wi-Fi network will run better if use routers and devices that support the latest Wi-Fi standard.

We mentioned Wi-Fi 6E. This is the latest Wi-Fi standard which arrived this year. This standard, for the first time since the beginning of Wi-Fi, it uses 6GHz. This band is a new section of the radio spectrum which hasn’t been used by Wi-Fi before. This new standard will minimise interference with other networks and help achieve speeds we haven’t seen before.

Where do routers fit into all of this?

As you have seen, there has been a steady stream of Wi-Fi standards since the internet first emerged.

As with most things technological, improvements are constantly being made. We live in a world where there is always the newest device – Faster, more compact, better this, better that. Always competing with what came before it.

You probably replace your phone quite regularly, especially if you are on a contract or plan. Getting an upgrade is the norm! You may also do the same with laptops and tablets, TV’s and other smart devices around the home.

But do you do the same with your router?

Have you ever stopped to think that the router you’ve had since you moved in is stopping all your new devices from working to their optimum ability?

Your smartphone might support Wi-Fi 6, but that’s no good if your router is ten years old! Could your router be the cause of your home Wi-Fi problems? Slow internet speeds, bottlenecks, buffering?

What’s the point in spending thousands of pounds on the latest phone, tablet, laptop, smart TV etc if you haven’t invested in a router – And instead connect all your top-of-the-range devices to a box you got free from your provider when you moved in nearly a decade ago.

It seems pretty obvious now we’ve pointed it out, but so many of us do this very thing. We’re not trying to shame you – the majority of people don’t consider that their Wi-Fi woes could be a result of an older router.

‘I think my router could be causing my Wi-Fi problems – What do I do next?’

Assuming that the connection coming into your home is not ‘dodgy’ then a new router could be the answer to your Wi-Fi problems.

The majority of households have a pretty straightforward set of needs when it comes to Wi-Fi coverage. A simple change, such as a pair of Wi-Fi 6 ‘mesh routers’, could be just what you need to to provide a bit of extra bandwidth and even cover those annoying ‘black spots’. Esepcailly if one of those happens to be out in the garden where you desperately tried to catch a bit of sun whilst working from home during the summer!

For the cost of skipping the latest smartphone upgrade, you could fix the Wi-Fi problems for your entire household.

No more buffering mid Netflix binge. No more dropping out of video calls and online meetings. No more being ‘that colleague or friend’ that causes the tech problems.

This one small switch could be far more beneficial that upgrading your devices or doubling your monthly BT bill.

What if replacing your router could give all your Wi-Fi devices a new lease of life in your home?

 

What’s the difference between LTE and 5G?

There has been much hype surrounding 5G, relentlessly for years. Now as part of a global rollout we see 5G available in most major cities as well as some towns and more rural areas. Soon enough, we’ll be using 5G just as we use 4G as the standard.

But 5G is still new to the wireless scene. And for some, the question is – Do we really need 5G when we’ve got LTE?

Many of us are still depending on long-term evolution technology. Indeed, there are only a few areas in the UK that don’t have any LTE presence.

What is LTE?

LTE was first launched back in 2009, and whilst it took a number of years to become part of our national connectivity fabric, it is still now a standard for wireless communications.

The reason for its staying power is down to its reliability and stability – Leading many wireless users to wonder if they even need to move over to 5G.

What is the difference between 4G LTE and 5G?

It was necessary to identify LTE as an element of the 4G standard as many telecoms companies weren’t actually able to provide 4G speeds due to infrastructure. The regulator ITU-R (International Telegraph Union Radiocommunication) established LTE as a standard to show the progress being made towards true 4G.

The download/upload speeds of a particular standard can be different in theory and in practise. Whilst in theory, 4G LTE can achieve data transfer speeds of up to 150Mbps for downloading content and 50Mbps for upload speeds, in practise is is more likely to be 20Mbps and 10Mbps respectively.

These figures will vary depending on:

  • Location
  • Network deployment
  • Traffic

How does 5G compare to 4G LTE in terms of download speeds?

5G connectivity offers theoretical download speeds of up to 10Gbps. A pretty staggering difference! Of course in practise, it may not reach this, but even real-world examples seem to still be dwarfing the speeds of 4G LTE.

Why does 5G reach higher speeds?

5G uses a different spectrum to 4G – Called mmWave which are high-frequency bands. The higher speeds are mostly reached because these high frequency bands support more bandwidth than the ones that LTE uses. This means that more data can be transferred at once.

5G can also use frequencies above low-band but lower than 6GHz. Despite these not supporting the highest possible speeds, they will still outclass 4G LTE. It’s worth noting that 5G coverage could be further expanded by using connectivity below 6GHz, especially as walls and surfaces can block mmWave frequencies.

Basically, 5G uses a different spectrum to 4G LTE and thus:

  • Delivers stronger, faster connections
  • Has a higher capacity for traffic
  • Has low latency (1ms)

Sounds too good to be true doesn’t it! It’s worth remembering that the rollout of 5G is still in its infancy, and therefore coverage is still limited. Before the big networks like EE, Three and Vodafone can deliver the top scope of what 5G has to offer, more work needs to be done.

So should we be choosing LTE or 5G?

As with most techy things, there are lots of factors, such as:

  • Your budget
  • Where you’re based
  • What your connectivity needs are – Personal or business

The more countries adopt and expand their 5G infrastructure, the more 5G-friendly hardware we will start to see. The best way to know whether to choose LTE or 5G is seeing what is on the market and whether it meets your needs.

You may find that some of the 5G devices available don’t have a 4G alternative. You may also find that they are rather on the pricey side! So definitely shop around.

Of course, the more 5G devices we see on the market, the more we will see the prices start to come down. So the time for adopting 5G over LTE may not be quite yet. Patience could also serve you more of the promises 5G has to offer – The more the 5G coverage continues to expand, the higher the speeds and the more consistent the connection to mmWave networks.

Since 2019, we’ve seen prices start to come down as competition in the market starts to heat up, but 5G is still costly. If you have a big budget then you could just go for it now, but we feel like the overall coverage, packages and prices will continue to rapidly improve. We’re inclined to hold out a bit longer and stick to LTE for the time being.

What about 5G for business?

If your business relies on heavily on connected sensors and other similar IoT networks then 5G may be the network you’ve been waiting for. The bandwidth and low latency that 5G could bring to your business cannot be easily ignored.

Think driverless cars navigation and smart sensors – 5G could well be the communications technology that will enable some great and creative deployments.

What are the health concerns associated with 5G?

With 5G comes questions about whether it could harm our health. Do you remember when mobile phones were beginning to emerge into mainstream use and there was much anxiety about what the radio waves were doing to our health? Mobile telephone has never been without concerns, but 5G seems to have evoked more than its fair share of health worries.

The installation of 5G masts have been banned in multiple UK locations. And it’s not just parts of the UK that are opposed to 5G – Back in 2017 180 scientists from 36 different countries made a public appea to the EU to pause their plans of 5G expansion whilst investigations were carried out looking at the long-term effects on human health.

Whilst both 4G and 5G use radio waves, 5G uses higher frequency waves. It’s these high frequency waves that provide better network capacity and speed.

Studies that have looked into any potential health risks from 5G haven’t seemed to identify any specific danger from 5G.

What is the future for LTE and 5G?

With the rise of 5G comes potentially society-changing connectivity – Like self-driving cars.

But technological advances can be slow if not steady. Whilst there is definitely potential for 5G to take over, it could take considerable time for 5G-enabled devices to really take hold of the market. Even from the likes of Apple!

There is still space for 4G LTE in our networks, and whilst it may be 5G’s predecessor, it’s not going anywhere just yet.

Research from Ericsson suggests that the dominant cellular network technology seen in most regions globally is still 4G LTE. 78% of mobile subscriptions in Western Europe in fact! Just because the 5G rollout is well underway, doesn’t mean that everyone will immediately jump ship and drop 4G LTE. It’s expected that 4G LTE will still be the dominant network even 5 years from now.

By 2026 Western Europe is predicted to be using 5G in 69% of all mobile subscriptions. However, Ericssons findings suggest that even as 5G usage surges, 4G LTE won’t automatically decline. It’s even predicted that 4G LTE availability will grow, with global coverage of 95% by 2026, with 5G only seeing 60% in those 5 years.

There is no denying that 5G is the future for telecoms. But by the time we are all accustomed to using it, 6G might well be on the way! Despite 5G becoming more prevalent as time passes, we still think there’s no need to be abandoning 4G just yet.

Can My Christmas Lights Affect My Wi-Fi?

The 1st December means we can officially start talking about Christmas! December 1st also happens to be National Christmas Lights Day which coincides with many people choosing to put up their Christmas tree (if they haven’t already done so!).

So you fight the knot of Christmas lights that you’ve fetched from the loft, stick on the ‘Christmas is Coming’ playlist on Spotify (thank us later) and flick the switch for the moment of truth – And Bublé buffers as soon as the tree lights up. What’s going on?

There tends to be articles that circulate this time of year about how Christmas lights could be interfering with your Wi-Fi. But is it really the Christmas tree lights that’s causing Mariah to falter on that high note?

If you haven’t put your tree up yet, and you’re a bit of a Wi-Fi geek (like us) then why not do a little experiment to see exactly how much your Christmas tree lights affect your Wi-Fi? Test your internet and download speeds before and after putting up the Christmas tree with the lights turned on.

 

Will my Wi-Fi be affected by my Christmas tree lights?

Let’s face it, no one wants to choose between functioning Wi-Fi and a Christmassy home. People need that bit of festive cheer more than ever this year, but we also need to know we can rely on our Wi-Fi to keep us connected with our loved ones over the festive period (and stream all the Christmas movies…).

There are potential Wi-Fi issues that can arise with Christmas tree lights so we thought it was worth running through a few do’s and don’ts to help avoid any internet interference from happening in your home. But first – what’s the reason Christmas lights could cause internet issues?

 

How can Christmas tree lights interfere with Wi-FI?

Christmas lights emit a very weak electromagnetic field which can theoretically interfere with the radio waves being transmitted from your router, thus affecting your Wi-Fi speed. If the lights were to transmit electromagnetic radiation at or around the same frequency, then it is possible that they could slow down your Wi-Fi.

Between the LED or lamp being completely on or off, it can exhibit negative resistance which in turn causes radio energy. This happens less with modern day lights than older ones though (see below for more info on this).

Is your tree lit up to give a soft glow, or does it look like something fresh out of Blackpool illuminations? The more lights you have, the stronger the electromagnetic field will be.

And the closer the router is to the lights, the higher the chance of interference.

So what can you do to ensure that your beautifully decorated Christmas tree doesn’t knock off your Netflix binge of Christmas movies?

 

Geekabit’s Top Tips to Prevent Wi-Fi Interference this Festive Season

 

Rule #1 – Don’t place things on top of your router

Just don’t do it. This doesn’t just go for decorations, but in general. We can’t stress this enough – Don’t put anything on top of your router.

This includes Christmas lights – No matter how festive they look! Don’t put Christmas lights or anything else directly on top of, or too close to, your router.

Whilst it has been reported that routers that were placed too close to Christmas tree lights could be negatively affected by signal interference, if they’re not directly next to each other or on top of each other, it should be fine.

 

Rule #2 – Use a main plug socket

We get it – Christmas is one of those times of year when you’re struggling for socket space and digging out all the extension cables you can find to be able to power Christmas tree lights and all kinds of other lit decorations.

But don’t be tempted to unplug the router and plug it into the extension cable. It will work a lot better, and faster, if it’s plugged into a main socket.

 

Rule #3 – The more modern the lights, the better

There are generally 2 types of light whose qualities have the potential to cause interference.

Older types of Christmas lights that are arranged in a string of low voltage lamps in series with each other and are designed to blink can cause radio interference which can lead to dips in Wi-Fi speed.

More modern Christmas lights use solid-state LED’s and have an external control for flashing which don’t create radio noise. However, it’s worth noting that some LED’s have a chip inside the bulb to control the blink and these devices can also cause interference.

On the whole though, modern lights are definitely less likely to cause you a Wi-Fi problem, so maybe save yourself the annual horror of trying to untangle your 10 year old string of lights and treat yourself to some new ones.

 

Rule #4 – Don’t put your router in ‘high traffic’ areas

Tis the season for family gatherings, friend get-togethers and all sorts of festive shenanigans. Not to mention the big man in red tumbling down the chimney! Humans are great signal absorbers, so put the router in a place where it won’t get blocked by partying people or round bellies that shake like jelly.

 

Did you do the Wi-Fi speed test before and after? We’re pretty sure the results will be rather negligible but we’d love to hear your results!

 

SpeedScore by Geekabit

Your internet speed has never been so important. Connectivity is as important as electricity, water and gas to a home or business. Decisions are made based on the speed you can offer, yet connectivity is often overlooked until it’s too late.

House buyers, tenants, hospitality customers and even employees are getting more tech savvy and starting to ask questions about internet speeds and reliability.

With a decade of providing connectivity solutions to UK markets, we have launched our innovative Internet Connectivity Measurement Platform.

SpeedScore by Geekabit gives you a variety of tools to help provide an independent certification of your internet speeds and connectivity.

Most internet speed tests are not accurate, as they become affected by the use of Wi-Fi, old devices and different test endpoints. You can’t expect them to provide the same results test after test due to a variety of factors.

Our hardware and software is different, resolving these issues and providing a balanced and independent view. We have no affiliation with any connectivity provider or hardware manufacturer, allowing us to create a truly impartial scheme based on scientific measurement and reporting.

Who is SpeedScore for?
Perfect for Estate Agents looking to prove internet connection speeds in properties for sale, landlords looking to provide accurate broadband measurement for potential tenants, and hospitality hosts giving confidence to those looking for a connected stay.

What does SpeedScore include?
The core platform consists of the SpeedScore ConnectBox – plugged directly into your broadband router (available for purchase or hire) and the SpeedScore Platform and App. You can show live scores within your own online marketing, provide exportable reports and download certificates to provide an independent and balanced view from our experts.

Prove your internet speed and connectivity status, when and where you need it with SpeedScore by Geekabit.

We have limited availability for the first rollout of our platform, and are looking for a final few customers for our initial shipping batch. If you would like to take part, please email .

The Fundamentals of a Wireless LAN

We were going to call this blog ‘WLANs for Dummies’ but that seemed a bit harsh so we settled on the fundamentals of a wireless LAN instead.

A wireless LAN, or WLAN, might seem complicated on the surface but actually it really just follows simple laws of physics. If you can understand these and follow them, then there shouldn’t be any reason why you can’t achieve high performance and scalability for your WLAN.

If you can understand the basics of wireless physics, then you can start to plan your WLAN for a successful deployment. It will also help you to troubleshoot an existing WLAN exhibiting issues.

How Does Data Travel Through a WLAN?

First things first – Let’s look at wave properties.

Data transmits, or travels, from one point to another – e.g. between wireless access points – via electromagnetic waves. This energy travels at the speed of light and operate at different frequencies.

The frequencies of these electromagnetic waves are defined by how many periodic cycles are completed by second.

For example:

How is Frequency Measured?

As we said above, frequency is how many wave cycles are completed per second. This is measured in Hertz. A 2Hz waveform is 2 completed wave cycles in a period of 1 second.

How Does Frequency Affect a WLAN?

A phenomenon called Free Space Path Loss is something that causes signal loss when a waveform travels from one point to another. This is what affects how well data travels across a wireless network.

Different wavelengths (frequencies) experience difference signal loss. The lower the frequency, the longer the wavelength, and the longer the wavelength, the further it can travel before signal gets lost.

For example, 2.4GHz have longer wavelengths than higher frequencies like 5GHz.

How is Wi-Fi Signal Loss Measured?

We measure the energy that is associated with received wireless signals in Decibels (dB). We can also measure loss of signal in this way.

Decibels are logarithmic. On the linear domain, when you add decibels it grows exponentially and when you subtract decibels it reduces exponentially.

The 3dB rule

Every 3dB change, there is a doubling of energy (if increasing) or a halving of energy (if decreasing).

As a ratio, this would look like:

If we had the wireless signal energy at
1:10dB

Then doubling it would be
2:13dB

Remembering this rule can help with both analysing the energy associated with wireless signals as well as predicting it.
Similarly, if you add or subract 10dB, it changes by a factor of 10.

The Relationship Between Frequency and Wireless Signal

Let’s take a look at 2.4Ghz and 5GHz frequencies or waveforms. 5GHz is a higher frequency, so has more wavelengths in a given time period. 5GHz has more wireless signal loss (attenuation) than 2.4GHz, and thus is better for high-density areas. 2.4GHz has less wavelengths in a given time period and is better suited for wider coverage. Bear this in mind when you are planning or troubleshooting a wireless network.

How is Wireless Signal Affected by Different Materials?

In an ideal world, you would have a clear line of sight between your wireless points. In reality, this is rarely the case and you will often find things that get in the way and stop the wireless signal from traversing effectively across your network.

Different materials will affect wireless signals and attenuation in different ways.

Materials such as concrete will cause more attenuation of wireless signal than wood.

In scenarios where wireless signals can propagate (the action of spreading) normally, there is no interference from other materials. However, there are some things that can alter the propagation of a wireless signal, causing it to behave differently and potentially become unreliable.

For example, a WLAN environment with metal surfaces may encounter unpredictability with wireless signal due to it reflecting off the metal.
Wireless signal can also be absorbed by certain materials like water or people, causing the signal to falter.

Being mindful of materials during the WLAN planning stage can help ensure the environment doesn’t hinder your wireless network and you have reliable connectivity results.

Co-Channel Interference

Different materials aren’t the only thing that can interfer with wireless signals.

Due to the 2.4GHz and 5GHz frewuency bands being unlicensed, there are no restrictions on people when extending wireless networks with access points.

This means that they can become crowded as well as channels not being assigned efficiently. Both of these issues can cause co-channel interference.

When planning your WLAN it’s important to take these issues nito consideration and plan your wireless network accordingly so as not to risk problems with wireless signal later down the line.

You want your WLAN to be as effective and efficient as it can possible be, which takes planning and wireless network knowledge.

Whilst the 2.4GHz is popular due to its propagation qualities due its waveforms passing through materials like walls more easily and reaching end users at a long distance. This however has meant that its become crowded with competing devices such as cordless telephones, baby monitors and bluetooth devices. This saturation can cause problems with your wireless signal.

In comparison, the 5GHz spectrum has greater availability and relaxed transmission power giving it more flexibility when it comes to wireless networks.

The 2.4GHz band has only 3 channels without any overlap, whereas the 5GHz has 24. This is another reason why the 5GHz band is favoured for high-density WLAN environments.

Understanding Frequency Channels

To ensure you can maximise the performance and scalability of your WLAN, you need to understand how these channels operate and use that knowledge to avoid co-channel interference.

Let’s take an Access Point as an example. An AP will have a specific bandwidth through which it will transmit and receive signals to and from other points. The channel assigned to the AP will be appropriate for the centre frequency of the first 20MHz channel used by the AP.

This bandwidth is specifically the frequency range over which the data signals are transmitted. Peak transmission and power is spread over the range of that bandwidth, with it dropping off at the edges.

These edges are then at risk of meeting other nearby wireless networks and are prone to interference from the ‘noise’ of these other networks.

It’s important to use what you know about channels to prevent the reduction of wireless signal speed and loss of scalability of your wireless network.

In order to minimise interference between neighbouring access points, choose to assign them with non-adjacent channels. Following this will make it easier to scale your network. If you don’t follow this principle, you will likely encounter problems with latency and throughput.

The best way of reducing interference when assigning WLAN channels is to carry out a Wi-Fi site survey. This involves analysing the noise levels across the spectrum so you can make informed decisions for your wireless network.

Call The Experts

If this all sounds a bit complicated, then why not give us a call here at Geekabit? We have Wi-Fi expert engineers working out of Hampshire, Cardiff and London who can take care of all your Wi-Fi woes.

From Wi-Fi site surveys, to planning and installation, we’ve got your WLAN covered. GIve us a call or drop us an email to see how we can help keep you and your business connected.

Ubiquiti Wi-Fi Expert Help

Here at Geekabit, we love Ubiquiti – It’s no secret. We’re often asked what bits of Wi-Fi kit are our favourites, and Ubiquiti is definitely one of them. We use Ubiquiti wireless devices so much that we consider ourselves a bit of an expert when it comes to Ubiquiti Wi-Fi installations. We’ve done quite a few blogs sharing our expert knowledge of Ubiquiti Wi-Fi devices, so this week we thought we’d do a quick round-up on some of the things we’ve touched on.

Let’s start with how Ubiquiti UniFi could help your business. This blog was the first in a series of three looking at the benefits of Ubiquiti UniFi in a business setting. If excellent, reliable Wi-Fi is critical to your business operations, then this is well worth a read.

[Part 1] What is Ubiquiti UniFi and How Could It Help Your Business?

In the above blog, we looked at what Ubiquiti UniFi actually was and how it could function as a network in your business. This next one focuses in on the Controller and UniFi Cloud Key and their expert Wi-Fi function within an effective wireless network.

[Part 2] Ubiquiti UniFi – The Brains

The third in that series of blogs looked at the elements that complete the Ubiquiti UniFi network and how they could provide you with a better connected business. After the last 18 months, we’ve all seen how vital it is to have a reliable connection. This series of 3 blogs on Ubiquiti UniFi highlights how these interconnected devices could be the ideal solution for keeping your business well connected.

[Part 3] Ubiquiti UniFi – The Elements

Ubiquiti Access Points are a staple in our Wi-Fi toolkit. We’re confident that their selection of access points are straightforward to match to our clients needs and satisfy your end users. For a blog that takes you through choosing the right Ubiquiti access point for your business, check out the link below.

How Do I Choose The Right Ubiquiti UniFi Access Point?

Of course, Ubiquiti isn’t the only provider out there. How does it compare to some other top options on the wireless device market? See how it stacks up against popular choices from Meraki and Aruba.

UniFi vs Meraki vs Aruba

With all the Wi-Fi 6 hype, you might be wondering what the choices are in terms of Ubiquiti Wi-Fi 6 products. In that case, you’ll probably want to have a read about the Amplifi Alien – The new Wi-Fi 6 router from Ubiquiti.

Amplifi Alien – The New Wi-Fi 6 Router from Ubiquiti

If you have a large area to cover with your network range, then mesh could be the right option for you. Mesh is essentially like a interconnected grid or net of access points that all communicate with each other, ensuring that even if one goes down you don’t drop your connection. If this sounds like something that could work for your business Wi-Fi network, have a read of the blog below explaining Ubiquiti UniFi Mesh models.

Ubiquiti UniFi – What are Mesh and Mesh Pro Models?

The latest from our Ubiquiti blogs is the range of Ubiquiti airMAX products. With something to match every business Wi-Fi need – from a functional perspective to design aesthetics – This blog will take you through the Ubiquiti airMAX device choices.

Which Ubiquiti airMAX product should I choose?

If you need Ubiquiti Wi-Fi expert help then give us a call here at Geekabit. Our Wi-Fi experts operate out of London, Hampshire and Cardiff and are all competent in Ubiquiti wireless devices.

To get in touch, give us a call or drop us a message.

 

Wi-Fi Frequencies: An Overview

With all of the current and future Wi-Fi frequencies and technologies are really getting confusing, with that in mind theres actually more than you realise. So let’s take a look at what’s out there and what’s coming up, as well as trying to make it as simple as we can.

There are two common well known dominant Wi-Fi frequencies used by 802.11a/b/g/n systems, 2.4 GHz and 5 GHz. Almost all modern Wi-Fi devices are made to operate in one or both of these frequencies. These frequencies now dominate most of our homes.

The same basic OFDM technology used by 802.11a in 5 GHz is also used in a 4.9 GHz public safety band. This band is 50 MHz wide it requires a license and is only available in some regulatory domains. There are specific and limited purposes for this band so you won’t see a lot of commercial interest or attention here.

The FCC also opened up 50 MHz of bandwidth in a 3.6 GHz licensed band. OFDM is used here as well. In the US this band requires a license but usage is not limited to certain technologies, so the band will be shared.  There aren’t many benefits to this frequency band and the interference avoidance requirements represent a moderate R&D requirement without much ROI.

You’ve most likely heard about this PHY spec in development. It builds on 802.11n MIMO technology in 5 GHz and seeks to expand on the HT PHY with a few developments that are a natural next step. 802.11n gave us 40 MHz bonded channels. 802.11ac will give us 80 MHz channels and, likely, 160 MHz channels.. 80 MHz bandwidth will get us past the gigabit rate threshold. MIMO will also be expanded to 8×8, but since client devices aren’t adopting that type of power hungry radio anytime in the near future (or ever), 8×8 will be used for MU-MIMO. MU-MIMO allows an AP to transmit simultaneous downlink frames to multiple users (MUs).

VHT 60 GHz (802.11ad) — This PHY opens up a fresh use case for Wi-Fi in the form of very high throughput at short range. There are a lot of challenges getting the kind of range that would be useful to enterprises. We’ll see short-range, high bandwidth applications, but there are still failings to see the exciting benefits that have been touted in the press.

White-Fi (802.11af) — The TV whitespace frequencies between 50 and 600 MHz have also created some exciting buzz in the past several months. There are many articles out there discussing the limitations and benefits of this band. The main issue with this frequency is that contiguous bandwidth is in short supply, so we see a handful of 6 MHz-wide channels, which will yield lower transmission rates than 802.11a/g. The merits of a low frequency are fairly well known; that is, despite the throughput-deficient bandwidth, the range and coverage is advantageous. Rural broadband applications are the evident winner with this technology where coverage is more important than bandwidth and high user density.

It is also worth mentioning 900 MHz. Back in the 1990s, 900 MHz was a popular pre-802.11-Wi-Fi frequency. It is an unlicensed ISM band. This is a semi-popular broadband frequency with decent range and limited throughput. Many vendors use proprietary PtP and PtMP solutions here for wireless distribution, but they are not defined by 802.11 and they are not designed for client access.

Wi-FI frequencies in brief:

  • 50-600 MHz TV Whitespace — Good range, low capacity.
  • 900 MHz — Proprietary PtP and PtMP. Decent range, slow rates.
  • 2.4 GHz — Well-known and used.
  • 3.6 GHz — Little-used, licensed band.
  • 4.9 GHz — Licensed public safety band.
  • 5 GHz — Well-known and used, the future of Wi-Fi.
  • 60 GHz — Short range, very high throughput.
Coffee shop cyber-security – how high is the risk?

It’s fair to say that the media has a way of taking an idea and running with it, which can often create hysteria.  This week we’ve been reading a lot of stories about internet security in public spaces and have been questioning the findings.

 

Ipass have just published their 2017 security report and the findings have been interesting.  Coffee shops have been flagged up as public networks where hackers can most easily access other people’s data.  The findings stated that CEO’s present the greatest security risk to businesses as they are often working remotely and therefore connect to public wi-fi which could pose a risk.  Of course, CEO’s are in possession of valuable information and so the risk to a business could be colossal. Interestingly, the report states that many organisations have stepped up their security measures and don’t allow employees to connect to public networks due to concerns about internet safety.

 

These findings have not only raised questions for businesses but have also raised questions about our everyday safety and how reliable public wi-fi really is.  However, there are ways to ensure that you are always secure.  VPN’s can help to create a safer connection by encrypting information travelling to and from a device.  Using a VPN can inhibit these attacks and keep your information safe so we thoroughly recommend looking into that as an option.  The reports are interesting and raise valid points about cyber security.  However, it’s always worth bearing in mind that there are ways to reduce your risk.  Get in touch to find out more!

 

Read the full report here:

https://www.ipass.com/wp-content/uploads/2017/05/iPass-2017-Mobile-Security-Report.pdf

Battle of the best connection

This week, our interest in maintaining incredible internet connection has lead us to finding out which countries Wi-Fi is performing best.

 

And the results have been interesting…

 

Rotten Wi-Fi’s latest findings show that the UK is surprisingly quite far behind other countries in terms of interest speed.  Public Wi-Fi has become a pretty essential part of everyday life for most of us and the demand has certainly increased in recent years.  Interestingly the UK falls behind countries such as Lithuania and Switzerland when comparing the average download speed.

 

Although we do come in behind Lithuania, Singapore, Denmark and Switzerland in terms of internet speed, we are placed ahead of the USA and Germany.  In fact, the USA and Germany haven’t been doing so well in recent years and their internet speed hasn’t made the top 20 until this year.  The latest findings show that countries such as Latvia, Hungary and Estonia are still ahead of Germany and the USA in terms of download speed.

 

Lithuania tops the charts with the fastest public Wi-Fi, followed closely by Denmark.  Fast and effective public Wi-Fi is hugely important in the modern day and we’ll be interested to see if the UK can develop their Wi-Fi speed to keep up with the demand in the coming years.
Data source: www.rottenwifi.com; November 2016

Image Credit: Alto Digital