SpeedScore by Geekabit

Your internet speed has never been so important. Connectivity is as important as electricity, water and gas to a home or business. Decisions are made based on the speed you can offer, yet connectivity is often overlooked until it’s too late.

House buyers, tenants, hospitality customers and even employees are getting more tech savvy and starting to ask questions about internet speeds and reliability.

With a decade of providing connectivity solutions to UK markets, we have launched our innovative Internet Connectivity Measurement Platform.

SpeedScore by Geekabit gives you a variety of tools to help provide an independent certification of your internet speeds and connectivity.

Most internet speed tests are not accurate, as they become affected by the use of Wi-Fi, old devices and different test endpoints. You can’t expect them to provide the same results test after test due to a variety of factors.

Our hardware and software is different, resolving these issues and providing a balanced and independent view. We have no affiliation with any connectivity provider or hardware manufacturer, allowing us to create a truly impartial scheme based on scientific measurement and reporting.

Who is SpeedScore for?
Perfect for Estate Agents looking to prove internet connection speeds in properties for sale, landlords looking to provide accurate broadband measurement for potential tenants, and hospitality hosts giving confidence to those looking for a connected stay.

What does SpeedScore include?
The core platform consists of the SpeedScore ConnectBox – plugged directly into your broadband router (available for purchase or hire) and the SpeedScore Platform and App. You can show live scores within your own online marketing, provide exportable reports and download certificates to provide an independent and balanced view from our experts.

Prove your internet speed and connectivity status, when and where you need it with SpeedScore by Geekabit.

We have limited availability for the first rollout of our platform, and are looking for a final few customers for our initial shipping batch. If you would like to take part, please email .

The Fundamentals of a Wireless LAN

We were going to call this blog ‘WLANs for Dummies’ but that seemed a bit harsh so we settled on the fundamentals of a wireless LAN instead.

A wireless LAN, or WLAN, might seem complicated on the surface but actually it really just follows simple laws of physics. If you can understand these and follow them, then there shouldn’t be any reason why you can’t achieve high performance and scalability for your WLAN.

If you can understand the basics of wireless physics, then you can start to plan your WLAN for a successful deployment. It will also help you to troubleshoot an existing WLAN exhibiting issues.

How Does Data Travel Through a WLAN?

First things first – Let’s look at wave properties.

Data transmits, or travels, from one point to another – e.g. between wireless access points – via electromagnetic waves. This energy travels at the speed of light and operate at different frequencies.

The frequencies of these electromagnetic waves are defined by how many periodic cycles are completed by second.

For example:

How is Frequency Measured?

As we said above, frequency is how many wave cycles are completed per second. This is measured in Hertz. A 2Hz waveform is 2 completed wave cycles in a period of 1 second.

How Does Frequency Affect a WLAN?

A phenomenon called Free Space Path Loss is something that causes signal loss when a waveform travels from one point to another. This is what affects how well data travels across a wireless network.

Different wavelengths (frequencies) experience difference signal loss. The lower the frequency, the longer the wavelength, and the longer the wavelength, the further it can travel before signal gets lost.

For example, 2.4GHz have longer wavelengths than higher frequencies like 5GHz.

How is Wi-Fi Signal Loss Measured?

We measure the energy that is associated with received wireless signals in Decibels (dB). We can also measure loss of signal in this way.

Decibels are logarithmic. On the linear domain, when you add decibels it grows exponentially and when you subtract decibels it reduces exponentially.

The 3dB rule

Every 3dB change, there is a doubling of energy (if increasing) or a halving of energy (if decreasing).

As a ratio, this would look like:

If we had the wireless signal energy at
1:10dB

Then doubling it would be
2:13dB

Remembering this rule can help with both analysing the energy associated with wireless signals as well as predicting it.
Similarly, if you add or subract 10dB, it changes by a factor of 10.

The Relationship Between Frequency and Wireless Signal

Let’s take a look at 2.4Ghz and 5GHz frequencies or waveforms. 5GHz is a higher frequency, so has more wavelengths in a given time period. 5GHz has more wireless signal loss (attenuation) than 2.4GHz, and thus is better for high-density areas. 2.4GHz has less wavelengths in a given time period and is better suited for wider coverage. Bear this in mind when you are planning or troubleshooting a wireless network.

How is Wireless Signal Affected by Different Materials?

In an ideal world, you would have a clear line of sight between your wireless points. In reality, this is rarely the case and you will often find things that get in the way and stop the wireless signal from traversing effectively across your network.

Different materials will affect wireless signals and attenuation in different ways.

Materials such as concrete will cause more attenuation of wireless signal than wood.

In scenarios where wireless signals can propagate (the action of spreading) normally, there is no interference from other materials. However, there are some things that can alter the propagation of a wireless signal, causing it to behave differently and potentially become unreliable.

For example, a WLAN environment with metal surfaces may encounter unpredictability with wireless signal due to it reflecting off the metal.
Wireless signal can also be absorbed by certain materials like water or people, causing the signal to falter.

Being mindful of materials during the WLAN planning stage can help ensure the environment doesn’t hinder your wireless network and you have reliable connectivity results.

Co-Channel Interference

Different materials aren’t the only thing that can interfer with wireless signals.

Due to the 2.4GHz and 5GHz frewuency bands being unlicensed, there are no restrictions on people when extending wireless networks with access points.

This means that they can become crowded as well as channels not being assigned efficiently. Both of these issues can cause co-channel interference.

When planning your WLAN it’s important to take these issues nito consideration and plan your wireless network accordingly so as not to risk problems with wireless signal later down the line.

You want your WLAN to be as effective and efficient as it can possible be, which takes planning and wireless network knowledge.

Whilst the 2.4GHz is popular due to its propagation qualities due its waveforms passing through materials like walls more easily and reaching end users at a long distance. This however has meant that its become crowded with competing devices such as cordless telephones, baby monitors and bluetooth devices. This saturation can cause problems with your wireless signal.

In comparison, the 5GHz spectrum has greater availability and relaxed transmission power giving it more flexibility when it comes to wireless networks.

The 2.4GHz band has only 3 channels without any overlap, whereas the 5GHz has 24. This is another reason why the 5GHz band is favoured for high-density WLAN environments.

Understanding Frequency Channels

To ensure you can maximise the performance and scalability of your WLAN, you need to understand how these channels operate and use that knowledge to avoid co-channel interference.

Let’s take an Access Point as an example. An AP will have a specific bandwidth through which it will transmit and receive signals to and from other points. The channel assigned to the AP will be appropriate for the centre frequency of the first 20MHz channel used by the AP.

This bandwidth is specifically the frequency range over which the data signals are transmitted. Peak transmission and power is spread over the range of that bandwidth, with it dropping off at the edges.

These edges are then at risk of meeting other nearby wireless networks and are prone to interference from the ‘noise’ of these other networks.

It’s important to use what you know about channels to prevent the reduction of wireless signal speed and loss of scalability of your wireless network.

In order to minimise interference between neighbouring access points, choose to assign them with non-adjacent channels. Following this will make it easier to scale your network. If you don’t follow this principle, you will likely encounter problems with latency and throughput.

The best way of reducing interference when assigning WLAN channels is to carry out a Wi-Fi site survey. This involves analysing the noise levels across the spectrum so you can make informed decisions for your wireless network.

Call The Experts

If this all sounds a bit complicated, then why not give us a call here at Geekabit? We have Wi-Fi expert engineers working out of Hampshire, Cardiff and London who can take care of all your Wi-Fi woes.

From Wi-Fi site surveys, to planning and installation, we’ve got your WLAN covered. GIve us a call or drop us an email to see how we can help keep you and your business connected.

Ubiquiti Wi-Fi Expert Help

Here at Geekabit, we love Ubiquiti – It’s no secret. We’re often asked what bits of Wi-Fi kit are our favourites, and Ubiquiti is definitely one of them. We use Ubiquiti wireless devices so much that we consider ourselves a bit of an expert when it comes to Ubiquiti Wi-Fi installations. We’ve done quite a few blogs sharing our expert knowledge of Ubiquiti Wi-Fi devices, so this week we thought we’d do a quick round-up on some of the things we’ve touched on.

Let’s start with how Ubiquiti UniFi could help your business. This blog was the first in a series of three looking at the benefits of Ubiquiti UniFi in a business setting. If excellent, reliable Wi-Fi is critical to your business operations, then this is well worth a read.

[Part 1] What is Ubiquiti UniFi and How Could It Help Your Business?

In the above blog, we looked at what Ubiquiti UniFi actually was and how it could function as a network in your business. This next one focuses in on the Controller and UniFi Cloud Key and their expert Wi-Fi function within an effective wireless network.

[Part 2] Ubiquiti UniFi – The Brains

The third in that series of blogs looked at the elements that complete the Ubiquiti UniFi network and how they could provide you with a better connected business. After the last 18 months, we’ve all seen how vital it is to have a reliable connection. This series of 3 blogs on Ubiquiti UniFi highlights how these interconnected devices could be the ideal solution for keeping your business well connected.

[Part 3] Ubiquiti UniFi – The Elements

Ubiquiti Access Points are a staple in our Wi-Fi toolkit. We’re confident that their selection of access points are straightforward to match to our clients needs and satisfy your end users. For a blog that takes you through choosing the right Ubiquiti access point for your business, check out the link below.

How Do I Choose The Right Ubiquiti UniFi Access Point?

Of course, Ubiquiti isn’t the only provider out there. How does it compare to some other top options on the wireless device market? See how it stacks up against popular choices from Meraki and Aruba.

UniFi vs Meraki vs Aruba

With all the Wi-Fi 6 hype, you might be wondering what the choices are in terms of Ubiquiti Wi-Fi 6 products. In that case, you’ll probably want to have a read about the Amplifi Alien – The new Wi-Fi 6 router from Ubiquiti.

Amplifi Alien – The New Wi-Fi 6 Router from Ubiquiti

If you have a large area to cover with your network range, then mesh could be the right option for you. Mesh is essentially like a interconnected grid or net of access points that all communicate with each other, ensuring that even if one goes down you don’t drop your connection. If this sounds like something that could work for your business Wi-Fi network, have a read of the blog below explaining Ubiquiti UniFi Mesh models.

Ubiquiti UniFi – What are Mesh and Mesh Pro Models?

The latest from our Ubiquiti blogs is the range of Ubiquiti airMAX products. With something to match every business Wi-Fi need – from a functional perspective to design aesthetics – This blog will take you through the Ubiquiti airMAX device choices.

Which Ubiquiti airMAX product should I choose?

If you need Ubiquiti Wi-Fi expert help then give us a call here at Geekabit. Our Wi-Fi experts operate out of London, Hampshire and Cardiff and are all competent in Ubiquiti wireless devices.

To get in touch, give us a call or drop us a message.

 

Which Ubiquiti airMAX product should I choose?

It’s no secret that we’re big fans of Ubiquiti products here at Geekabit. We often recommend their devices and bits of kit for our clients and business Wi-Fi installations.

This blog is going to look at some of the different Ubiquiti airMAX products there are and which ones might be suited to your business and Wi-Fi needs. There are lots of different options that cover various outdoor wireless scenarios.

 

Point-to-Point or Point-to-Multipoint?

Let’s start at the beginning. First you need to ascertain whether your outdoor Wi-Fi would be best suited to a Point-to-Point (PtP) or Point-to-Multipoint (PtMP) network. These are the two primary deployment methods for distributing any fixed outdoor wireless communications.

Point-to-Point (PtP) – This method connects two locations, usually at a distance of multiple km, and essentially forms an Ethernet bridge.

Point-to-Multipoint links (PtMP): This method can connect three or more locations, via one Base Station (or Access Point) and multiple CPE devices (Stations) connected to the Access Point.

 

Point-to-Point (PtP) Links

Here are some of the Ubiquiti airMAX products with specifications on what wireless environment they would cater for. Whilst there are distances listed below, these are meant as a reference. It’s important to bear in mind that all real-life results have influencing environmental factors, for example, interference and Line of Sight.

Short distance (0-5 km)

NanoBeam 5AC-G2: This is recommended for short links, and exhibits superior performance which is due to the latest airMAX AC technology. It is able to deliver up to 450Mbps of throughput.

NanoStation 5AC Loco: Another good option for short distance links, this is the lowest cost PtP solution that has airMAX AC technology.

NanoStation 5AC: This one is a popular choice when it comes to short link Wi-Fi, and is commonly chosen for video surveillance due to its dual-Ethernet port capability. It also has airMAX AC technology.

Medium distance (5-15 km)

LiteBeam 5AC-23-G2: This is recommended as Customer Premises Equipment (CPE – any device accessing the internet) for most cases. Thanks to the latest airMAX AC technology, it has superior performance and can to deliver up to 450Mbps of throughput.

PowerBeam 5AC-G2: Recommended as CPE for medium or long distance links. Once again it has superior performance thanks to the latest airMAX AC technology. It can to deliver up to 450Mbps of throughput.

PowerBeam 5AC ISO:  This one is very similar to PowerBeam 5AC but offers an alternative for high-noise environments.

 

Point-to-Multipoint (PtMP) Links

When it comes to PtMP outdoor wireless networks, it’s really important to remember that the performance is dependent on both sides of the link. If you are trying to get across long distances, you’ll need to make good choices when it comes to the Base Station and CPE for each case. We’ll be looking at these options below.

The release of Ubiquiti operating systems airOS 6 (for M devices) and airOS 8 (for AC devices) provides backwards compatibility and means that you can upgrade your M sector by simply swapping the M AP for an airMAX AC radio as the AP.

 

Base Stations

You will usually find the location of a base station on the top of a tower, building or mast. Your maximum coverage will be determined by the height of that tower.

Low Capacity and Short distance Base Stations

For short distance base stations with low capacity, take a look at the following Ubiquiti airMAX products. These are ideal for areas with low interference.

Rocket M + airMAX OMNI antenna: This could be a great option for more rural Wi-Fi needs, particularly as it is susceptible to interference. It can support up to 60+ concurrent stations when all devices are airMAX capable.

High Capacity & High-Performance Base Stations

Rocket 5AC PRISM G1/G2 + airMAX AC Sector Antenna: This one’s for the highest performance base stations with carrier-grade system. Eight 45° antennas give 360° coverage. Co-adjacent noise is significantly reduces with airPRISM technology.

Rocket 5AC Lite + Titanium Sector Antennas: For medium-high density areas, this is a high-performance solution. It uses the latest airMAX AC technology plus variable beamwidth (60-120°) antennas for scalable growth.

LiteAP AC: This one is an ultra-lightweight airMAX AC sector + radio. It has incredible performance and disruptive pricing, plus 120° coverage.

 

Customer Premise Equipment (CPE)

One of the great things about Ubiquiti is the range of products and how they can work together to support your wireless network as a whole. If you go for the airMAX CPE to support your Ubiquiti products, you’re also getting centralised SDN management, hotspot/guest portal, advanced SSID/WLAN configuration, routing, switching and more. It’s well worth looking at the whole range available. Or call the experts (that’s us) to see whether Ubiquiti wireless devices could help with your wireless network.

Short distance (0-3 km)  

NanoBeam 5AC-G2: This has slightly greater range than the NanoBeam 5AC-19 M and is more directive.

Medium distance (3-7 km)

LiteBeam 5AC-23-G2: This low-cost CPE has very narrow beamwidth, and MIMO technology. This one is the new industry-standard for airMAX AC CPEs.

PowerBeam 5AC-G2: This option is a highly directive CPE, with better range and lower noise.

Long distance (7+ km)

PowerBeam 5AC-500/620: This one is a higher power device, with a super directive antenna, better range and lower noise. If you’re a design buff then you might also like how it’s more aesthetically pleasing compared to bulky dishes.

Rocket 5AC-Lite + RocketDish LW: You’ll likely find this one the best performing option. It’s higher cost than integrated designs, and can be unsightly as a CPE. It supports IsoBeam accessory for better isolation, which comes with RF chokes.

 

Frequency Options

Let’s talk about frequency. Due to physics and utilisation, each frequency has different characteristics.

Lower frequencies have better propagation characteristics than higher frequencies. You may find that they work better in environments where the Line of Sight is obstructed (for example, by trees). However, these bands may also have higher levels of noise and interference, so it’s very important to select the frequency that works best for your wireless environment.

Let’s have a look at the pros and cons of some frequency bands.

900MHz (M900) – Pros and Cons

  • Better tolerance for trees and small obstacles in comparison to higher frequencies
  • Tends to have higher noise levels
  • Only has a 26MHz bandwidth

2.4GHz (M2) – Pros and Cons

  • It is unlicensed worldwide
  • It only has 3 over-lapping 20MHz channels (1, 6, 11)
  • It tends to be a very crowded band with interference from other devices such as cordless phones
  • 40MHz channelse are not recommended

3.x GHz (M3-M365) – Pros and Cons

  • 300MHz bandwidth in countries where 3.4-3.7GHz band is available
  • It is noise free in most areas
  • Only 25MHz bandwidth in countries where 3.65GHz can be used
  • It requires a license

5 GHz (5AC/AF5/AF5X) – Pros and Cons

  • It is unlicensed worldwide
  • Higher EIRP limits allow higher gain antennas, and long distance links
  • Large amounts of spectrum available, easier to co-locate nearby devices
  • Weaker propagation in comparison to lower frequencies when there are obstacles like trees or walls are present

10 GHz (M10) – Pros and Cons

  • It is noise-free in most cases and is very useful when the 5.8GHz band is crowded
  • It has a very small Fresnel zone
  • It is only available in a few areas
  • It is a licensed band
  • It needs a perfectly clear Line of Sight

11 GHz (AF11FX) – Pros and Cons

  • It is noise-free in most cases and is very useful when the 5.8GHz band is crowded
  • It has a very small Fresnel zone
  • It is only available in a few areas
  • It is a licensed band
  • It needs a perfectly clear Line of Sight

 

Antenna Types

We spoke about the important of each side of the link being effective to ensure the highest performance possible. Now it’s time to talk about the antennas.

High gain antennas also play an important role when deploying a high performance outdoor wireless network. There are two main reasons:

  • They provide high gain amplification of the signal power resulting in higher signals and better link quality.
  • They are highly directional, which gives them spatial filtering characteristics that can help to block noise. This is especially important in noisy environments.

When thinking about the antenna for the base station, you might think it’s best to go for the one that offers the largest coverage area. However, it’s actually better to choose the antenna that covers the smallest amount of coverage that covers your range area. An antenna covering a larger area than needed could be more susceptible to interference due to a wider beamwidth, causing a decrease in scalability and performance.

Here are the categories of antenna.

Yagi: Directive, used for PTP and CPE applications. Frequently used in low frequencies, such as 900MHz, due to size

Grid: Directive, used for PTP and CPE applications. Great wind-loading properties. However, this type only works in one polarity (1×1), so lower performance than 2×2 antennas (Dish, Panel, etc.)

Panel: Directive, used for PTP and CPE applications. Compact design is very attractive in situations where dishes are not preferred.

Dish: Most Directive, highest performing airMAX antennas for PTP applications. Usually larger and heavier.

Omni: Provides 360 degrees of horizontal coverage (omni-directional). Ideal for low capacity and wide-coverage AP / Base Station applications)

Sector: Ideal choice for high performance Base Stations. Offer higher gain and directivity than omnidirectional antennas. Usually offered in 45, 60, 90, or 120 degree options.

This list is not conclusive. You can find all of the current airMAX antennas here by looking at the antenna section.

For more information in general about Ubiquiti airMAX options, head to their website.

 

No idea where to start?

Here at Geekabit, our expert wireless network engineers have the knowledge and experience to help you deploy a high performing outdoor wireless network in Hampshire, London and Wales. If you would like to discuss your Wi-Fi network requirements, please don’t hesitate to get in touch with us. Our Wi-Fi experts are only a phone call away!

 

Do I Need a Wi-Fi 6 Router?

Don’t suffer with the buffer! If you’re finding that your Netflix binge is being interrupted by buffering, or your Zoom calls keep freezing or pixelating then it’s a good idea to make sure that your router isn’t the culprit.

If you’re looking for fast, reliable broadband, then Wi-Fi 6 could be just what you’re looking for. Last time we blogged about the improvements from Wi-Fi 5 that Wi-Fi 6 will be bringing. If that hooks you in then read on and see whether a Wi-Fi 6 router might end up being a great investment for your business or household.

Wi-Fi 6 is specifically designed to improve the performance of your home network and increase network capacity. This latest generation of Wi-Fi standard will offer your home faster Wi-Fi speeds and a more reliable connection. What does this mean in real times? It means buffer-free streaming on Netflix (and other platforms) and quicker downloads – Even if your house is device heavy, it won’t slow down your internet.

More and more internet devices are Wi-Fi 6 ready, but will only work to their optimum if there is also a Wi-Fi 6 router in place. (Likewise, a Wi-Fi 6 router will only offer Wi-Fi 6 improvements for devices enabled with Wi-Fi 6 technology).

We thought we would share some of the reasons why you might want to consider a Wi-Fi 6 router next time you’re in the market for one (or even if you’re not!. )

My household has multiple devices – What will Wi-Fi 6 provide me in comparison to Wi-Fi 5?

Wi-Fi 6 will provide you with the highest level of performance, even in a device-heavy household.

Wi-Fi 5 provided us with great technology – Wi-Fi 6 is an extension of that. Whilst Wi-Fi 5 brought us gigabit speeds, it begins to fall short in homes where there are more and more devices being added. How many devices do you have in your home that connect to the Wi-Fi? Count them and we think you’ll be surprised! And this is only going to increase over time. Wi-Fi 6 helps with this because it uses OFDMA (orthogonal frequency division multiple access). This key feature means that it can increase your overall network efficiency by allowing several devices to connect to your Wi-Fi with various bandwidths.

What real-world speeds and range will Wi-Fi 6 provide?

Wi-Fi 6 will deliver the fastest real-world speeds.

Wi-Fi data travels on component streams on each of the frequency bands 2.4 GHz and 5GHz. Wi-Fi 5 and Wi-Fi 6 can carry the highest amount of streams, which allows for gigabit Wi-Fi speeds. Where Wi-Fi 6 goes further is that it increases the number of streams to 12 – A new high across the 2.4 and 5GHz bands. In comparison, Wi-Fi 5 only has a limit of 8 in a dual band configuration.

How do these streams affect your Wi-Fi? Not only does this increase in streams mean that you have access to a higher connection speed, it also means that your devices can communicate with your router via more paths. Compared to Wi-Fi 5 enabled devices, Wi-Fi 6 show an 40% increase in speed.

How is Wi-Fi 6 designed for the ‘Smart Home’?

Our homes are now full of smart devices. We can control the heating and the lights with the tap of a button on our phones. We can ask the postman to leave the parcel by the gate via our video doorbell. We turn music on via Alexa and we add to our shopping list by shouting Hey Google. We have smart TV’s as well as numerous laptops, tablets and smartphones all vying for a connection to the Wi-Fi. That’s a lot of devices. In fact, the average number of devices in the home has gone from 10 up to as many as 50. All of these put a load on your network.

Where does Wi-Fi 6 come in? Well, it’s been specifically designed to handle this demand on your Wi-Fi through the increase in devices – Without negatively impacting your internet speeds.

How will this affect your home? This improvement in internet speed will provide more reliability – Vital if you’re depending on it for your lights, thermostat and other IoT devices. The last thing you want with all these devices running is interrupted connectivity. Thankfully, Wi-Fi 6 will help with that

How will Wi-Fi 6 help with video streaming?

A Wi-Fi 6 router would be ideal for 4K/8K UHD streaming.

If you’ve tried to stream 4K or 8K video, then you’ll know it requires a constant high-speed connection. In busy, device-heavy households where everyone is trying to stream high-definition video you’re likely to start seeing buffering – It’s a big load on the network.

Wi-Fi 6 routers could help with all that thought. Annoying buffering will be a thing of the past due to a Wi-Fi 6 router’s ultra-fast processors, increased number of radio streams and increased memory.

You should find that Wi-Fi 6 routers will make streaming of HD video across multiple devices a lot better than older Wi-Fi technology.

Are Wi-Fi 6 products available now?

Yes – They’re already here! Future upgrades to smartphones, tablets and laptops will see the rise of Wi-Fi 6 enabled technology, so getting a Wi-Fi 6 router will mean you’re ready to benefit from all the improvements that Wi-Fi 6 has to offer – Like faster Wi-Fi speeds!

The great thing is that WI-Fi 6 routers will also work for Wi-Fi 5 devices (without the improvements) so it’s a great crossover for whilst you’re upgrading devices.

The Wi-Fi 6 portfolio of products is only going to get bigger, so consider whether a switch to a Wi-Fi 6 router would be a worthwhile investment for your home.

 

What’s Different About Wi-Fi 6?

Wondering what all the fuss is about when it comes to Wi-Fi 6? If you’re questioning what the differences are and whether it’s worth making hardware device changes, then read on.

The next generation of wireless standard is here (actually, it’s been here since the end of 2019). Wi-Fi 6, or 802.11ax has the following main differences:

  • It’s faster
  • It provides better performance in congested areas (think anything from your own device-packed home, to stadiums)

We know it informally as Wi-Fi 6 – Wi-Fi versions have now been assigned simple numbers to replace the more complicated code-like names that we saw before.

What are the Wi-Fi Version Numbers?

The new Wi-Fi version numbers are much more user friendly, but for the fellow geeks among us, here are what the new version numbers correspond to, plus (whilst not being officially branded) what all of the old versions would have been.

Wi-Fi 1 – 802.11b (released in 1999)

Wi-Fi 2 – 802.11a (also released in 1999)

Wi-Fi 3 – 802.11g (released in 2003)

Wi-Fi 4 – 802.11n (released in 2009)

Wi-Fi 5 – 802.11ac (released in 2014)

Wi-Fi 6 – 802.11ax (released in 2019)

You might start to see these newer version numbers appear in software when connecting your smartphone, tablet or laptop, to enable you to see which Wi-Fi networks are newer and faster. This is what the Wi-Fi Alliance announced that they would like to be seeing across networks. It’s worth noting that it isn’t mandatory for manufacturers to label their products with Wi-Fi 6 instead of 802.11ax, but we’re hopeful that most will. Re-naming products from 802.11ac to Wi-Fi 5 might be another matter though!

Wi-Fi That’s Faster

As with most technological advances, the latest development in Wi-Fi standard is faster in terms of data transfer speeds. In comparison to Wi-Fi 5, a Wi-Fi 6 router would provide one device with up to 40% higher speeds.

What Makes Wi-Fi 6 Faster?

The reason Wi-Fi 6 can achieve such faster speeds is due to more efficient data coding which thus results in higher throughput. Basically, the radio waves are packed with more data. With each Wi-Fi standard, the ability for the chips to encode and decode the data gets more powerful, hence why Wi-Fi 6 is faster than Wi-Fi 5, and can handle extra work.

You may be aware that we have 2 frequenceis used for networks – 5GHz and 2.4GHz. 5GHz is more commonly used as it is subject to less interference, however 2.4GHz is still a good option for being able to penetrate solid objects. Wi-Fi 6, the new standard, even increases speeds on these 2.4GHz networks.

How Will Wi-Fi 6 Affect the Battery Life on my Device?

Many Wi-Fi 6 enabled devices will have a new ‘target wake time’ feature. This means that an access point can define a specific set of times when devices connected to the internet need to have access to the wireless network. This new efficiency should mean that your Wi-Fi enables devices should have a longer battery life.

Let’s take your smartphone, for example. When the AP is talking to your phone, it can tell it when to put it’s Wi-Fi radio to sleep and when to wave it up to receive the next transmission. Because your device can spend more time in sleep mode, you should find your battery lasts longer.

It also means that devices that connect via Wi-Fi with lower power can benefit from longer battery life.

Wi-Fi That Performs Better in Crowded Areas

We know there hasn’t been much opportunity for it as late, but picture trying to get online at an airport, hotel or live event at a stadium. When an area is as congested with devices as these, you can suffer with slow Wi-Fi and even struggle to connect.

Wi-Fi 6 tackles just this problem. With new technology, superior to previous Wi-Fi standards, it’s purported that Wi-Fi 6 will improve the average speed of each user by at least 4 times. Even in crowded areas with lots of devices.

This isn’t just something that will benefit you when out in public places – It could be a huge help in your home as well. If you have a large family all with multiple devices connected to Wi-Fi, then this could be just the solution to stop the slow-down. Or perhaps if you live in a densely populated place, like a block of flats.

How Does Wi-Fi 6 Tackle Congestion from Multiple Devices?

There are various features that help Wi-Fi 6 better tackle the problem of heavily crowded networks. Just knowing that a Wi-Fi 6 device connected to a Wi-Fi 6 access point will work better may well be enough for you!

For those who want all the geeky details, here’s what’s going on to make Wi-Fi 6 better for networks with multiple or many devices.

Wi-Fi 6 technology is able to create a large number of sub-channels within one wireless channel. Date intended for each individual device can be carried by each sub-channel. This technology is called Orthogonal Frequency Division Multiple Access (OFDMA). Essentially this means that a Wi-Fi 6 enabled access point can talk to more devices at once.

Wi-Fi 6 also has improved MultipleIn/Multiple Out (MIMO). Again, this lets the access point talk to multiple devices at once through multiple antennas. The difference between this and Wi-Fi 5, is that while the latter enabled an access point to talk to multiple devices at the same time, it couldn’t allow the devices to respond at the same time, thus slowing things down. The new improved MIMO on Wi-Fi 6 is a multi-user version (MU-MIMO) which enables devices to respond to the access point at the same time.

Let’s look at another potential scenario. Wireless access points that are locating close to one another may transmit on the same channel. This means that the radio needs to listen and wait for a clear signal before it can reply. Wi-Fi 6 uses spatial frequency re-use which allows you to configure Wi-Fi 6 wireless access points with different Basic Service Set (BSS) colours, which consists of a number between 0 and 7. The device can then determine whether a particular channel has a weaker signal, and thus ignore it and transmit without waiting. This is another way in which Wi-Fi 6 will improve wireless performance in congested areas.

These are just a couple of the improvements to be seen from the new Wi-Fi 6 standard. There are many more, smaller enhancements which will improve the speed and performance with Wi-Fi 6.

How Do I Know If Something has Wi-Fi 6?

Luckily, thanks to this handy article, you’re now familiar with all the technical names of the different Wi-Fi standards, so you’ll know exactly what to look for. Right? Don’t panic! We’re only kidding. Thanks to the new versions, it’ll be easy for you to find devices that are certified Wi-Fi 6 (rather than hunting around for 802.11ax!). Device manufacturers are able to say whether their product is Wi-Fi 6 or Wi-Fi 5.

You may also start to see a logo saying ‘Wi-Fi 6 Certified’ on relevant devices. This means that the product has gone through the Wi-Fi Alliance’s certification process. The old Wi-Fi Certified logo simply told you it was Wi-Fi Certified, rather than what generation of Wi-Fi a product was. The new logo will make it clear if it is Wi-Fi 6. So there will be no need for trawling through product specifications!

When Can I Get Wi-Fi 6 Enabled Devices?

The new Wi-Fi 6 standard was finalised in 2019, with hardware being released in the latter part of the same year and into 2020. So you should be seeing Wi-Fi 6 enabled products in the market now. It’s shouldn’t be something you need to put too much thought into – As new routers, smartphones, tables and laptops are released into the market, they will just start to come with this new Wi-Fi 6 technology.

It’s worth remembering that to benefit from the improvements on the new Wi-Fi 6 standard, you need both the sender and receiver devices to support this latest generation of Wi-Fi 6. Whatever the connection, it will only operate in the mode that your device supports. For example, you may have a Wi-Fi 6 enabled router, a Wi-Fi 6 enabled smartphone, but a laptop that only supports Wi-Fi 5. You’ll see the advantages of Wi-Fi 6 on your smartphone, but the laptop will only work at Wi-Fi 5 capacity.

What is Facebook Wi-Fi?
If you’re not one of the 100,000 businesses already using Facebook Wi-Fi then you may very well be asking this question! Facebook have launched their own Wi-Fi option, to help businesses connect with more people.

How does Facebook Wi-Fi work?

Most businesses will allow people to connect to their Wi-Fi – Sometimes with a password (recommended) and sometimes without. Whilst it’s much more secure for both your network and the guests using it to provide people with a Wi-Fi password, some may feel it’s a bit of a faff logistically.

This is where Facebook Wi-Fi helps – It allows people to connect to your business Wi-Fi without needing to share a password. Not only can it make things easier logistically, it could also help your business to reach new customers by increasing the number of check-ins to your Facebook Page. That way, your customer’s friends will discover you too!

What are the benefits of Facebook Wi-Fi?

  • As we’ve just mentioned, by utilising Facebook Wi-Fi in your business, you encourage users to check in, which in turn increases your exposure to a new audience and reach more potential customers through friends.
  • Currently, the most secure way to share Wi-Fi access is to give users a password to enable them to connect. Businesses have varying methods of sharing password information with their customers, but it can be frustrating for customers if they can’t find the information and arnd are keen to connect quickly. Facebook Wi-Fi means that people visiting your business won’t need a password in order to log connect to your Wi-Fi – You won’t need to share passwords with Facebook Wi-Fi.
  • Because it’s linked to your business Facebook page, you are able to gain insights on your visitors. Anonymous information is collected so you can identify how many returning visitors you have checking into your page through Facebook Wi-Fi.
  • It’s free! There is no charge to use Facebook Wi-Fi for your business.

How do I get Facebook Wi-Fi for my business?

If you’re eager to get started, you’ll need to add the Facebook Wi-Fi features to your existing Wi-Fi.

First of all, you will need to have a business page on Facebook and admin access to the page. Make sure your business has a physical address listed in the Page Info section.

You will also need to have a compatible router. If it is compatible, you need to enable Facebook Wi-Fi in your router’s settings.

If both admin access and router compatibility are in place set up could be complete in as little as 20 minutes!

Is my router compatible with Facebook Wi-Fi?

First, you need to know what router you have. You can find this information on your router box, or by typing your router’s IP address into your browser. Once you know what router you have, you can check to see if it’s compatible with Facebook Wi-Fi here. The list comprises of some of our favourite brands of business Wi-Fi kit, including Ubiquiti UniFi, Meraki, Aruba and Ruckus among others.

If your router is on the list, you can then click through to a handy set up guide on YouTube, specifically for your router. Easy peasy!

If your router isn’t compatible with Facebook Wi-Fi but you’re really desperate to use it, you’ll need to invest in a new router that is compatible.

Want to know more about Facebook Wi-Fi?

You can find more information about Facebook Wi-Fi on their website here.

Will you be using Facebook Wi-Fi for your business? Let us know – Come join the Wi-Fi chat on our socials @wifiexpertuk!

 

Could 4G Broadband Be The Answer to Threat of BT Strike?
Working-From-Home Fears Due To BT Strike

For the first time since 1987, BT are facing nationwide industrial action due to a ballot regarding job cuts and site closures. The Communication Workers Union is due to hold a ballot soon, which could have an enormous impact on the network if a yes vote is returned.

Through this ongoing pandemic, effective internet has kept us connected with colleagues as well as loved ones. It’s held businesses together through the rise of working from home, and it’s kept part of the economy going throughout lockdown restrictions. As a nation, we’ve realised how vital a good internet connection is.

Most of the UK’s broadband network consists of BT, EE and Openreach, serving millions of homes across the nation. If, in late Spring, a strike goes ahead this could mean big problems for people who are working from home and reliant on their broadband connection.

Assuredly, they will only strike if they feel they absolutely must – They don’t want to disrupt services across the country to people’s internet unless they feel they have no other choice to protect their workers and service.

What does the possible BT strike mean for those working from home?

Nationwide industrial action by BT staff could have a huge effect on those working from home, who are relying on a dependable internet connection. Is there anything worse than trying to get some work done with a slow internet connection, or a meeting via video call dropping out every 2 minutes?

The pandemic and lockdown restrictions has meant that almost 50% of the working population have been working from home during the pandemic (ONS).

These workers are relying on their home broadband connection to be able to continue doing their jobs.

As we’ve seen from the challenges of home-learning and home-working, those who are currently based at home need a connection that can support both upload and download speeds in order to partake in video conference calls like Zoom, Microsoft Teams and Google Meet.

Not only is home internet needed more than ever, but the quality of the connection is also more vital then it has been previously.

What alternatives to Wi-Fi would be unaffected by a BT strike?

If you are worried that your home internet connection could be affected by the posed threat of BT industrial action, there are thankfully alternative methods of getting internet into your home.

We have seen an influx of 4G broadband installations and enquiries. Whilst these have mostly been from areas in rural Hampshire where standard internet connections are unreliable and slow, 4G broadband is an excellent way of backing up your existing internet connection.

Why 4G broadband?

4G broadband is the idea solution to patchy, unreliable Openreach internet connections. It can also be an excellent back-up solution should your standard Wi-Fi connection go down or become unavailable.

4G signal is received via an external 4G antenna and emitted into your home through a 4G router using a sim based data plan.

Here at Geekabit, we have a 4G testing pole so that we can accurately estimate 4G internet speeds in your location before installing a new antenna and router.

How could 4G broadband help if my internet is affected by BT industrial action?

Our expert Wi-Fi engineers are skilled in providing 4G broadband services for hire. We are experienced in providing an ideal internet solution for scenarios such as building sites, TV filming and temporary cabins. It’s also a great interim option for people moving house and between service providers when they first move in to their new home.

This makes 4G broadband the perfect alternative if your internet was to be affected and your home-working situation compromised.

If you would like more information on our 4G broadband hire options, please don’t hesitate to get in touch with one of our Wi-Fi experts here.

If you are already experiencing internet problems in a rural area, then 4G broadband may well be the answer. You may be interested in previous blogs we’ve written regarding this – Or for more information, please see our website.

 

You can read more details on the threat of BT industrial action via The Guardian.

4G Broadband – The Answer to Your Rural Wi-Fi Woes?

Over the last year, we’ve been inundated with requests from people looking for a different and more reliable source of broadband service.

Many people are moving out of London into more rural areas and expecting the same internet connectivity as they would have in urban areas.

They soon realise that many parts of the countryside are suffering from a broadband deficit and there’s a connectivity imbalance across the countryside.

We’ve installed countless numbers of external 4G antennas and routers, effectively replacing the broadband through the telephone cable, with a data SIM card.

This simple solution has meant that people who couldn’t Zoom for work at home now can, children can do their schooling online through Google classroom and Teams, and the dreaded buffering of Netflix binging no longer happens.

Not only is this solution perfect for those at home, but it works excellently for temporary offices too, such as those in construction, archaeology and film and TV work.

We thought we would share a couple of case studies from some recent 4G installations that have seen a hugely positive affect on their connectivity since making the switch.

 

Case Study – A Rural Home in Bishops Waltham

Wi-Fi Issue: This charming rural home in Bishops Waltham struggled with only 2-3mb download speed and 0.5mb upload speed through their BT Openreach line. As the Director of a large London bank, this unreliable connection meant she couldn’t work from home.

Our 4G Broadband Solution: We installed a 4G antenna and router, and she’s now getting perfect 60mb download speeds with 20mb upload speeds. This means she then didn’t have to travel into London so often.

Case Study – A Garden Landscaping Company in New Alresford

Wi-Fi Issue: This garden landscaping company recently moved their office to a rural location without any internet or traditional phone line. Their new office was a converted shipping container which, as it is made of metal, meant that their phones wouldn’t work quite so well for internet speed.

Our 4G Broadband Solution: Our 4G external antenna solution means they now get 40mb download and 20mb upload speeds within their new office.

Case Study – A Large Metalwork Company in Rural Dorset

Wi-Fi Issue – This metalwork company was having trouble with 3-5mb download speeds and less than 1mb upload speeds. This was the maximum possible speed in their area. Having asked  BT Openreach to extend fibre to their premises, they found out it would not only have cost them hundreds of thousands of pounds, but also ruined a beautiful part of the countryside. (If you watch The Crown you may well have seen it!) The poor internet connection meant that contacting their London based clients over Zoom was very difficult, and often required them to do so from their home instead or office.

Our 4G Broadband Solution: Using our 4G router and external antenna, they now receive 70mb download speeds and 30mb upload speeds. This means they can now easily maintain contact with their clients without having to travel back to their homes for a good quality Zoom call. It also means they can employ more people onsite and increase employment in the local community without moving their office to a larger town.

 

If any of these problems seem familiar to you, whether it’s your home connection or business, perhaps now is the time to get in touch and let us see if we can help.

These 3 examples are just a handful of the successes we’ve seen from clients moving from a slow BT Openreach connection to a faster 4G broadband option.

 

How can you be sure that 4G broadband is the right option for you?

It’s okay to feel nervous, we understand how frustrating a slow connection can be. We can come and assess your property to see whether a 4G broadband option would be viable for you with our new 4G antenna testing pole. This bit of kit means we can get an accurate representation of how our 4G routers and eternal antennas can solve your broadband connectivity problems.

For more information on our 4G broadband service, head to our website. You can also get in touch with one of our Wi-Fi experts who will be happy to discuss your requirements.

 

Don’t let a slow BT Openreach connection hold you back. Whether it’s for Zoom calls to keep in touch with colleagues, WhatsApp video calls with friends and family, or nightly Netflix binges – You deserve a connection that doesn’t freeze, buffer or drop. Call in the Wi-Fi Experts today.

The Robustel R5020 5G Router

We’ve talked a lot in recent weeks about 4G broadband and how it can solve many Wi-Fi issues in rural areas and homes with a slow BT Openreach connection.

But of course, the question on everyone’s lips when we talk about 4G routers and mobile broadband is ‘when will there be a 5G router?’

One product we’re feeling particularly excited about is the Robustel R5020. This router is touted to be offering next-generation cellular connectivity at a competitive price.

The R5020 will enable rapid deployment of high speed IoT applications in sectors such as Transportation, Enterprise Connectivity and Digital Signage.

In a compact industrial unit, the R5020 will offer 3G, 4G/LTE and 5G band coverage.

What are the key features?  

Here are the key features of the Robustel R5020 5G router.

A router with 5G capability

As Robustel’s first 5G capable router, the R5020 will also be capable of supporting 4G and 3G bands.

 

A stable operating system

Powered by their tried and tested CPU platform, the R5020 uses their mature and stable in-house Operating System RobustOS. This OS is fully programmable with a fully documented Software Development Kit. It also comes with a free cloud management platform (RCMS).

 

Applications

The R5020 is designed for use by various applications.

In-vehicle applications

  • Passenger Wi-Fi
  • CCTV de-brief
  • Ticketing
  • Other similar “onboard” requirements

Potentially increase internet speeds in these scenarios with the R5020, as well as future-proofing your current installations by making them 5G compatible. The R5020 has achieved E-Mark* certification for in-vehicle use, and supports GNSS (Global Navigation Satellite System) positioning. There is also a version to protect vehicle batteries with vehicle ignition sensing when the engine is turned off.

Broadband Failover

  • As well as a 5G Router, the R5020 can be configured to use Ethernet or Wi-Fi as the primary internet source. Should there be an outage on either of these, it can then failover to 4G or 5G.
  • If your business is a shop or small office, this can provide a good degree of connectivity resilience at a reasonable cost.
  • It can provide sufficient bandwidth for multiple users.
  • Core networks can utilise connections from IPSEC (Internet Protocol Security), DMVPN (Dynamic Multipoint VPN) and Open VPN (Virtual Private Networks) protocols.

Primary Broadband

  • You might think that using mobile broadband would be a pricey alternative, but mobile networks are now offering unlimited 5G tariffs at reasonable prices.
  • This means that hundreds of Mbps internet are available over the air.
  • There are many technical and commercial scenarios that make a wireless internet connection a favourable option, and mobile broadband offers another level of connectivity on top.

 

For more information on this product, or to register your interest in it when it’s available, head to their website.

If you would like more information on how 4G broadband could make a difference to your connectivity, please get in touch with our Wi-Fi experts here at Geekabit. We have a 4G antenna testing pole so we can assess whether 4G would be a viable option for your premises.

 

 

*An e-Mark proves your vehicle or component complies with the relevant EU/ECE regulations and can be sold in the EU, as well as other regions which have signed up to the ECE vehicle regulations. EU type approval is mandatory for whole vehicles as well as a range of automotive systems and components