Starlink Latency – Is It Fast Enough to Hire for Events?

Network providers are constantly striving to improve performance to their service and Starlink engineering teams are no different. Starlink’s focus and goal is to deliver a service where the median latency is a stable 20ms with minimal packet loss. 

With customers and users across the globe, Starlink has managed to meaningfully reduce the median and worst-case latency over the past month. As an example, users in the US benefited from a reduction of 30% in median latency, taking it from 48.5ms to 22ms during peak times. Worst-case latency during peak times also dropped, this time by 60% from over 150ms to less than 65ms. 

Customers outside of the US have also enjoyed reduced median latency by up to 25% and worst-case latency by up to 35%. 

What is Latency?

Already we’ve talked a lot about latency – That’s what this article is about! Here’s a brief explanation of what latency actually is. 

Latency is generally measured in milliseconds, and refers to the amount of time it takes for a packet to be sent from your Starlink router to the internet and for the response to be received. This can also be referred to as RTT or “round-trip time.” 

For someone’s perceived experience of using the internet, latency is one of the most important factors. It can significantly affect things like:

  • The speed in which web pages load
  • How ‘real life’ audio and video calls feel
  • Responsiveness of online gaming

If you’re wondering actually how important latency is when it comes a user experience of using the internet, here’s an example. During testing, increasing the bandwidth beyond 10 Mbps didn’t increase the speed of which a web-page loaded, yet those that reduced latency saw much quicker load times. 

How Does Starlink Measure Latency?

Starlink’s latency is measured by collecting anonymous measurements from millions of Starlink routers. This measurement is taken every 15 seconds. The median and worst-case latencies are then calculated by taking the average of these 15 second latency measurements. 

Median Latency

The median (50th percentile or p50) refers to the point where half of the latency measurements are below that number and the other half are above. 

Worst-Case Latency

The worst-case latency, or 99th percentile, is defined as the place where 99% of measurements are better than a certain point. 

When Are These Measurements Taken?

Measurements are taken from all points in time so all data can be analysed, but Starlink do specifically look at how they are performing during peak times (between 6pm and 9pm). This is when most people are using a Starlink connection and the network is under the most load. 

What Affects Latency When Using a Starlink Connection?

There are a few factors that can affect latency in any network. For Starlink, the biggest things affecting latency are: 

  • Physical speed-of-light propagation from the user to the satellite and back to the ground.

    This goes back to the RTT (round trip time) we referred to earlier. Each part of the trip (there and then back) takes about 1.8 to 3.6 ms, with a total RTT of under 10 ms (usually).

    If traffic flows over laser links instead of directly to the ground, higher incidences of latency could occur. This would be as a result of congestion mitigation, lack of satellite to ground paths, and other factors.

    Laser connectivity is actually essential for connecting the most remote locations on Earth as well as for routing around congestion in the network. Starlink are however striving to make sure that latency sensitive traffic can flow over the shortest path possible. 
  • Ground latency from the gateway sites to the internet connection point driven by ground network layout.

    During 2024 the US will see the introduction of PoPs or Points of Presence, where Starlink has added 6 internet connect locations. They are optimising gateway locations and planning algorithms to ensure that traffic can land as close to its destination point as possible.

    Starlink continue to ensure that users are allocated to optimal internet connection locations, so that all users get the lowest latency possible route to the internet. 
  • Fronthaul (the radio links between the satellite and user) scheduling latency driven by the network topology and the number of users served by a given beam from a satellite.

    Over the past few months, Starlink’s major focus has been on optimising fronthaul scheduling latency, even though this is an inherent part of shared wireless systems. 
  • Non-physical limitations in the system.

    This would include unneeded processing delays, unoptimised buffers, or unnecessary packet drops that force retries.

    Buffers across the Starlink network have been right sized to reduce bufferbloat, and queueing algorithms have been improved to increase capacity on their gateway links from the ground to satellites. 


Starlink Wi-Fi latency has been improved, with the addition of active queue management (fq_codel) to the Starlink Wi-Fi router. What does this mean in real life? Well, with active queue management enabled, if one person on your Wi-Fi is downloading a big file, and another is playing a game, the queue management will make sure that game latency will not be affected by the download. 

How Are Starlink Striving to Reach the Goal of 20ms Latency?

Starlink has been monitoring and gaining metrics across the network to measure latency on every subsystem down to the microsecond over the past few months. They have rigorously tuned their algorithms to prefer paths with lower latency, no matter how small the difference and to remove any and all sources of unnecessary and non-physical latency. 

This is just a selection of some of the most impactful changes Starlink has made and continues to make. 

Since the beginning of the year, teams have deployed and tested 193 different satellite software builds, 75 gateway software builds, 222 Starlink software builds, and 57 Wi-Fi software builds. 

Over 2.6 million people around the world have chosen Starlink as their internet provider via satellite broadband. These customers can expect latency to continue to improve over the coming weeks and months as Starlink prioritises software changes, builds additional ground infrastructure, and launches more satellites. 

Future updates from Starlink are expected to include performance stats and more network goals as they work to improve the user experience. 

How Can I Check Starlink Latency For My Location? 

Be sure to check the latest latency statistics for your region at starlink.com/map.

Is Starlink Fast Enough to Hire for Events?

Absolutely! Here at Geekabit, we are delighted to be able to offer fast, reliable Wi-Fi via Starlink for a range of events and purposes across London and parts of the South of England. 

We’ve diligently tested what we can offer via Starlink when it comes to temporary Wi-Fi for outdoor events. Some of our test events included supporting policing events in London, hybrid meetings, rural wedding fairs and a busy city fireworks fundraising event. 

For more information on our Starlink hire service, please visit our blog. Fast Wi-Fi hire is available for events with Starlink hire from Geekabit. Feel free to contact us to find out more. 

Geekabit’s Top 10 Blogs of 2023

2023 is coming to a close – And we know the new year will bring new technology and wireless improvements with it!

Here at Geekabit, we covered a lot of different Wi-Fi topics last year here on the blog. Much of what we write about is influenced by the enquiries and questions that our customers and clients ask our Wi-Fi Experts across Winchester, London and Cardiff. This year we’ve seen an increase in demand for 4G/5G broadband and Starlink Satellite broadband options, particularly for homes and businesses in rural areas.

We thought we would take a look back on the last year and see what blogs were most popular with you – Our readers!

In at Number 10, this blog had people wondering whether scientists could watch we are doing through walls!

#10

Number 9 was all about finally getting 5G on the London Underground so you can stay connected whilst travelling around the capital.

#9

With Ubiquiti UniFi devices increasing in popularity, it’s no surprise that this fault finding blog about flashing lights on access points made it in at number 8.

#8

Here at Geekabit, we’ve talked a lot about how impactful broadband can be for rural businesses. This blog about unreliable broadband for rural businesses came in at number 7.

#7

It seems you all want to know how to choose and install a 4G and 5G mobile broadband antenna, as this blog telling you how narrowly missed being in our top 5 blogs of the year.

#6

Kicking us off in the top 5 was where best to place your router for successful results.

#5

Taking the 4th spot was a look into 2023 and what it had in store for us in the world of Wi-Fi.

#4

In 3rd place was another blog on 4G and 5G mobile broadband, answering all your frequently asked questions.

#3

Narrowly missing the top spot, this blog about discounted Starlink Satellite Ultrafast Broadband here in the UK was one of your most popular reads this year.

#2

And taking the top spot for most read Geekabit blog of 2023 was this one about the rise of UK Starlink broadband speeds.

#1

So it seems our readers were most looking for information on Starlink Satellite broadband and 4G/5G mobile broadband options. Does that mean that consumers and business broadband customers are interested in alternative Wi-Fi options for their homes and businesses?

We’re looking forward to what 2024 will bring in the tech world and seeing how that impacts all things Wi-Fi and staying well connected.

Why Are My Ubiquiti UniFi Access Points Flashing?

Are you seeing flashing lights? There’s nothing more infuriating than getting lights flashing on your device and not knowing what it means.

If you’re experiencing flashing lights on a UniFi device then read on to find out why, and what you need to do about it.

The images below show blue and white LED’s flashing in different formats depending on the status they are showing. Each type of flashing applies to all of the following UniFi devices:

  • Access points
  • routers
  • switches
  • UDM base model

My UniFi AP is flashing white and then off every few seconds

If your Ubiquiti UniFi device is flashing white/off every 1 or 2 seconds, it means that the device is intialising and starting up.

Why does my UniFi AP have a steady white light?

If you UniFi AP (or other listed device) is exhibiting a steady white light, it means it is ready for adoption. This means it is ready to begin the process of connecting to the UniFi application that will manage it.

Why is my UniFi UDM flashing blue?

This applies to UDM units only. If you see a flashing blue light, it means that a client device is connected to the network via Bluetooth.

Why is my UniFi UDM flashing blue and then off?

Again, this flashing only applies to the UDM units. If it is lighting up blue and then going off after 5 seconds, then back to blue, then off, it means it is not connected to the internet.

What does a constant blue light mean on my UniFi access point?

A steady blue light means that the UniFi device is adopted (connected to the UniFi application managing it) and is in normal operating mode. The Access Point (AP) is broadcasting SSIDs (Service Set Identifier – Typically a network name).

Why is my UniFi AP rapidly flashing white and off?

If you UniFi access point is strobing white/off then you will need to power cycle it. If that doesn’t work, then you will have to get in touch with Ubiquiti’s customer support team for further help.

Help – Why is my Ubiquiti UniFi Access Point flashing white then blue?

If your UniFi AP is quickly flashing white then blue, it means the device firmware is being upgraded. It’s important you do not interrupt this process.

On a UDM unit, it will flash only white during this upgrade.

Why has my UniFi AP got a blue steady light that goes off every 5 seconds?

If your UniFi AP is blue but flashing off every 5 seconds, it means the AP has lost connectivity and is looking for a wireless uplink.

I have a rapidly flashing blue light on my UniFi AP – What does it mean?

If your UniFi AP is rapidly flashing blue and then off, it means the device “Locate” feature was activated in the UniFi Network application.

Why is my UniFi AP flashing white, blue and then off?

The device is in TFTP mode (Trivial File Transfer Protocol is a simple lockstep File Transfer Protocol which allows a client to get a file from or put a file onto a remote host).

To enable this mode:

  1. Hold the reset button before powering on.
  2. Continue to hold the reset button until this LED sequence appears.

If you haven’t intentionally put your AP into TFTP mode, make sure that the reset button on the device isn’t jammed. It should click when pushed.

There is no LED / light visible on my UniFi Access Point?

If you can’t see any light on your AP device and the LED is completely off, then it means the device is offline. To try and resolve the problem:

  • Check it has a power supply
  • Check POE (power over ethernet) cables
  • Check Ethernet cables

Ubiquiti UniFi Bridge to Bridge Devices

If you have a UniFi Bridge to Bridge device, then there are two more statuses to look out for in addition to those above.

My UniFi Bridge has a red light with circulating blue light

If your UniFi Bridge device is showing a red with circulating blue LED, it means the 60 GHz link cannot be established or has dropped due to bad weather.

If the UBB fails over to 5 GHz, the LED will remain red. When the 60 GHz link is re-established, the LED will turn blue (or the custom colour selected in the UniFi Network application).

It’s worth noting that if the other bridge device is within range and the UBB LED is red, Uniquiti recommend adjusting the UBB’s position to enhance the signal strength.

Why does my UniFi bridge have a green light?

If your UniFi Bridge is showing a green light, it means that the Alignment Tool is enabled in the UniFi Network application and the UBB devices are aligned properly.

If the other bridge device is within range and the UBB LED is green and red, Ubiquiti recommend adjusting the UBB’s position until the LED is green.

How to Disable Device LEDs

Did you know that you can disable device LED’s? Using the UniFi Network application, you can choose specific device status LED’s or the whole site’s to be disabled.

To disable (or re-enable) status LED’s:

  • Open the UniFi Network Application
  • Go to Settings
  • Go to Site
  • Go to the Services section
  • Edit the LED feature

If you want to specifically configure individual devices:

  • Open the UniFi Network application
  • Go to the Devices section
  • Click on the device you wish to edit to bring up the Properties panel
  • Go to Config, then General, then LED
  • Switch the Site Settings to On or Off

Ubiquiti UniFi Fault Finding

For more information on any of the above, or to find LED patterns for specific ports, head to the Ubiquiti website here.

Is Ubiquiti UniFi right for your business Wi-Fi?

If you’re wondering if Ubiquiti UniFi is the best option for the Wi-Fi needs of your business, then get in touch with our Wi-Fi Experts today. We can advise what the best network options would be for your premises, and take you from the site survey stage, through to design and deployment. No one should have to tolerate bad broadband or slow Wi-Fi at work.

All imagery from ui.com/wi-fi with thanks.

Small Rural UK Businesses Damaged by Unreliable Broadband

The Federation of Small Businesses recently published a report highlighting how rural businesses are struggling with the ‘cost of doing business crisis.’ Not only are these rural businesses facing growing energy costs and problematic transport links, but they are also being hit with unreliable broadband. 

Could your business function without reliable broadband? 

Think of all the ways your business, whatever the industry, depends on a strong internet connection. How much disruption would unreliable broadband cause to your business? Effective internet access has become as vital as other utilities to businesses and homes – Yet businesses run from a rural area don’t appear to have a connection they can rely on. 

The report highlighted a range of issues these small rural businesses are facing, but here at Geekabit our focus is always on connectivity. This report illustrates that for small rural businesses:

  • Almost a third (32%) report issues with the reliability of their broadband (in comparison to 17% of urban businesses).
  • Twice as many rural businesses reported that unreliable broadband has affected their ability to contact customers (14% vs. 6%), reduced the competitiveness of their business (11% vs. 5%), and led to a loss of business or sales (10% vs. 5%).
  • Only 58 per cent of rural small businesses state that the speed of their broadband is sufficient for their current and future business needs.
  • 43 per cent of rural-based businesses have not yet changed their transport habits because of the insufficient local infrastructure to support electric vehicles (e.g. charge points).

Small rural businesses have a lot to offer their communities and industries. They shouldn’t have to face a loss of sales because of unreliable broadband. 

What Can Be Done for Small Rural Businesses With Unreliable Broadband?

There are a few different recommendations from the FSB to help tackle the negative impact of poor broadband connections on small rural businesses.

Update the Government USO

One recommendation from the FSB for tackling the issue of unreliable broadband in rural businesses would be for the government to update their current USO (Universal Service Obligation) minimum requirements for both upload and download speeds.

The current minimum requirements in the governments USO is 10 Mbps download speeds and 1 Mbps upload speed. The FSB doesn’t specify in their report what the updated speeds should be, but with the average download speed being approximately 79.1 Mbps we would think the USO needs to be higher than the 10 Mbps download speed deemed to be decent enough. Indeed, the European Union has plans for the universal download speed to be 100 Mbps by 2025. 

UK law states that every home and business has the right to a decent, affordable broadband connection, which is currently the 10 Mbps stated in the USO at a price of no more than £48.50 per month. 

But is that 10 Mbps download speed enough for a small rural business to function? Of course, it does depend somewhat on what type of business it is. A small boutique shop that only sells to customers in person might not need as high a connection as a photography and video editing business. 

Unfortunately, that USO hasn’t even managed to reach every UK location. There are tens of thousands of premises still unable to access download speeds of 10 Mbps due to their remote location – Largely due to the costs involved to create the necessary infrastructure. These places find themselves unable to connect to fixed line or fixed wireless services, whilst also being out of reach of suitable 4G/5G coverage. Making the necessary upgrades to these areas could cost hundreds of thousands of pounds if not into the millions. 

For this reason, just raising the minimum download speed in the USO isn’t going to be a magic fix for all rural businesses struggling with ineffective broadband. The infrastructure needed to really make a difference will take time and money to implement. Remember that this is also funded by the industry itself – Currently ISP’s BT and KCOM – Who have already committed to big legal and financial responsibilities by supporting the government’s USO scheme. 

At the end of the day, every business, including small rural businesses, deserve – And have the legal right to – decent broadband. And perhaps the USO figure of 10 Mbps isn’t cutting it now that we are doing business in a more connected world. A ‘decent’ broadband connection needs to reflect the individual needs and digital demands of individual businesses. Amongst other things, businesses need a strong connection to:

  • Communicate with customers – Online presence is essential in this day and age
  • Take online and mobile payments – Very few people pay using cash, and more customers are opting to pay via their smartphones
  • Send and receive large amounts of data 
  • Utilise E-commerce websites and ordering
  • Transmit orders to warehousing 
  • Connect via video conferencing

Project Gigabit Budget

The government has been trying to shrink the gap between the USO minimum speeds and the average internet speeds enjoyed in other areas with their Project Gigabit rollout. 

This aims to provide nationwide coverage by 2030 (nationwide meaning around 99%). 

The FSB recommends that the DSIT (Department for Science, Innovation and Technology) should take a proportion of the remaining budget allocated to Project Gigabit and use this to help those in hard to reach areas to connect to superfast broadband. 

LEO Satellite Broadband

Let’s not forget the possibility of LEO based satellite broadband like Starlink also being used to help those in particularly problematic areas. 

With more launches planned, this satellite network is only going to grow and could potentially help rural business (and homes) connect to more reliable internet.

The Shared Rural Network

There is also the Shared Rural Network scheme which is putting £1 billion into expanding 4G coverage. The FSB recommends that the DSIT ensures that the target of 95% of the UK having 4G coverage by 2025 is met. 

As part of the Shared Rural Network, our Wi-Fi experts here at Geekabit are helping to implement a rural 4G broadband scheme in West Sussex

Through this scheme, West Sussex businesses that are currently suffering from the slowest broadband speeds (10 Mbps or slower) are being supported to get online with an alternative 4G mobile broadband solution.

This 4G solution on offer to the county’s businesses uses 4G mobile data to connect their business premises to the internet in the same way that a smartphone sends and receives information. The solution uses a single, professionally mounted external antenna which is installed at the qualifying property. The external antenna can deliver a 4G signal directly into a newly supplied router, which then projects the connectivity in the form of Wi-Fi around the property, in the same way that conventional broadband works.

This investment in digital structure is part of the council’s plan to support a sustainable and prosperous economy, and businesses are already seeing huge benefits from using mobile connectivity. 

Get in Touch

If you own a rural business and are struggling with broadband connectivity then get in touch with our Wi-Fi experts today. Our professional engineers in Hampshire can advise whether 4G mobile broadband or Starlink Satellite broadband could help your business.

London Underground: 5G Deployed by Virgin Media O2 UK 

Last month, VMO2 became the last of the four primary mobile providers to begin their deployment of their ultrafast 5G mobile broadband service on the London Underground. 

Their 5G mobile broadband has been deployed on the:

  • Central Line – Between Queensway and Holland Park
  • Northern Line – Between Kentish Town and Archway 

5G Mobile Broadband on the Central Line

If you are a commuter on the Central Line, the Underground tunnels between Queensway and Holland Park now have 4G and 5G services following the new roll out. 

You should experience seamless connectivity when travelling through these stations. 

Nestled between Queensway and Holland Park is Notting Hill Gate Station, which has now been upgraded to be a fully 5G station. This means that Central Line platforms and ticket halls at this station will now have this latest mobile network available. 

The stations at Queensway and Holland Park have now had 4G introduced. 

With thanks to https://www.london-tube-map.info/central-line/ for the image

5G Mobile Broadband on the Northern Line

As a commuter on the Northern Line, you should now be able to connect to 5G from Archway to Tufnell Park stations. 

Kentish Town station will also now have 4G connectivity. 

With thanks to https://www.london-tube-map.info/northern-line/ for the image

Shared Platform from Boldyn Networks 

The same network platform from BAI Communications (Boldyn Networks) is being shared by all of the primary operators.

Transport for London have a 20 year concession deal with BAI. This allows them to build the infrastructure needed for fibre-fed mobile connectivity, and then make it available via wholesale. 

Revolutionised Commuting in the Capital

Having Underground connectivity has long been a dream for commuters travelling around London using the tube. 

Chief Commercial Officer for VMO2, Gareth Turpin, says:

“For the first time, our customers can access the latest 5G mobile services deep under London. This is set to revolutionise commuting in the capital, and in the weeks and months ahead we’ll be rolling out ultrafast mobile services at more Tube stations, in tunnels and on platforms to bring high-speed connectivity to our customers as they travel on the Underground.

This is part of our commitment to upgrading the UK and ensuring customers can access our network wherever they are.”

When will all of the London Underground have 4G / 5G mobile broadband connectivity?

The network coverage is set to expand further throughout this year. 

Back in 2020, earlier work by TfL and other mobile operators meant that there are already 4G services on the Jubilee Line between Canning Town and Westminster stations. 

Last month we saw the additions on the Central and Northern Lines outlined above. 

The target is for ticket halls, platforms and Underground tunnels throughout the London Underground network to have 4G and 5G connectivity by the end of 2024. 

Keep your eyes peeled for further announcements! 

Could Mobile Broadband Be Right For You?

If you think your rural home or business could benefit from 4G / 5G mobile broadband then please get in touch with our Wi-Fi experts. We operate across the South of England out of Hampshire, covering West Sussex, Dorset and the Isle of Wight. We are specialists in designing and deploying mobile broadband networks for those who struggle with the more traditional forms of broadband internet. 

5G Explained: What is Low, Mid, and High 5G?

As you can imagine, here at Geekabit we’re a bit geeky when it comes to all things wireless. It’s really in the name isn’t it?

Our spare time is often taken up with reading the latest on Wi-Fi and other wireless communications. Which of course includes 5G! We read a lot of information related to our field, but a blog from cwnp.com really stood out to us as an excellent explanation of 5G and how it works. 

We couldn’t resist sharing this info with you too! 

Let’s start with the basics – RF

When we talk about low, mid and high 5G we’re referring to the frequencies used. Radio Frequency (or RF) travels in waves – Just like sound or light! In simple terms, RF waves are non-visible electromagnetic waves. 

Let’s make it easier to understand with a bit of visualisation. Imagine you are sitting on the beach, watching the waves as they hit the sand. If you were to count how many waves hit the shoreline in one minute, that would be the frequency. 

In RF, we measure waves per second rather than a minute, but the premise is the same. 

5G Frequencies

Image from cwnp.com

In the above image from left to right, you are looking at 5G low (purple), 5G mid in the middle (turquoise) and then 5G high at the end (red). 

In the sea visualisation, the higher the frequency, the more water is being moved (the more waves hitting the shoreline). In RF, instead of water being moved it’s data. So the higher the frequency, the more data can be moved. 

There is unfortunately a downside to higher frequencies. Whilst they are able to move more data, receiving and processing that data across greater distances is a challenge. 

5G: What are the low, mid and high bands? 

Let’s take a closer look at each one in turn.

5G LOW

The strategy for 5G low is to use the lower band to provide coverage nationwide. This is because whilst it has lower data rates, it travels further. To enjoy the benefits of 5G lowband, the 5G needs to be standalone. This means not using 5G down and 4G up. 

Here in the UK, Vodafone were the first operator to offer customers a trial of their 5G standalone network in January of this year. Customers who opted in to the trial should see better reliability, coverage and battery life. 

5G MID

In 5G mid band we find the sweet spot. Not only do we get a decent range from this band, but its higher frequency allows us to see 600 Mbps to 1 Gbps speeds down. 

Interestingly, the 5G mid band is very similar to Wi-Fi frequencies and travel in a similar way. Where it differs to Wi-Fi is thecarriers ability to transmit at a higher power levels. This means that you can use much weaker signals to a better effect than Wi-Fi. 

This 5G mid band is aimed for use in urban areas, city centres and suburbs. 

5G HIGH

The 5G high band is extremely high throughput (how many units of information a system can process in a given amount of time). This band could see speeds of 10Gbps. 

Unfortunately, because it is such a high frequency, it doesn’t travel well at all. This band works best with ‘line of sight’ as almost any obstruction can significantly block the signal. 

You’re most likely to see this 5G high band in city centres where a mast or tower is put on the tallest building to transmit the signal, and receivers or antennas are put on the roofs of other buildings giving a clear line of sight between the two. 

You can see a visual representation of the 5G low, mid and high bands in the image below, again from cwnp.com with thanks. 

How To Choose and Install an External 4G or 5G Mobile Broadband Antenna

Like with so many of our utilities, we only really notice them when there’s a problem or they’re not working properly. Wi-Fi is just the same! Just like when the power goes out, if your Wi-Fi is on the blink then you know about it – And it is so frustrating! 

Whilst most people are lucky enough to connect to superfast broadband through a wired connection, there are also many rural homes that cannot access and connect to broadband or internet in the same straightforward way. 

Here at Geekabit, we work with lots of people – Businesses and homes – who struggle with the more traditional ways of connecting to the internet and have to turn to mobile broadband through 3G, 4G and 5G. 

And again, many people are lucky to have a business or home within range of a strong enough UK mobile broadband network.

‘Could I benefit from an external antenna?’

There are some more remote rural homes and businesses that find themselves struggling to connect to mobile broadband too. If your business or home is:

– Unable to connect to a decent fixed line ISP 

– Within range of a mobile broadband alternative but find it unstable on various operators

Then you might find it beneficial to get an external antenna installed. But which one do you need? 

Are External Mobile Broadband Antennas Easy to Install?

In terms of actually installing an external antenna, it’s actually pretty straightforward. All you need to do is choose a high, stable location on the outside wall of your house near the roof, and screw the antenna on. Remember to make sure it’s pointing in the right direction (ie. towards the nearest mast). 

You might also choose to mount your antenna on a pole to raise it higher than your house. If you’re going for this option, always make sure that it is stable and won’t cause any damage to the building you are mounting it to. It’s also worth liaising with your local authority before installing a large pole as in some areas, a tall pole could be in breach of planning rules. 

You will also need to drill the cable into the house – It’s very important to avoid any other electrical cables and water pipes whilst you are doing this as well as sealing up the holes afterwards. 

It’s also pretty important to keep the position of your router in mind. Will it be placed near the where the cable feeds into the building? Ideally, the cable between your antenna and router needs to be 5 metres or less otherwise you could find yourself struggling with interference and/ or signal loss. 

If that all feels a little daunting then you can hire a professional installer to do the job for you – Our expert Wi-Fi engineers here at Geekabit can do just this! We operate out of Hampshire, London and Cardiff.  

Whilst the physical aspects of installing an external antenna are quite straightforward, it’s not always easy to choose the right kit. The radio spectrum is variable by nature, which makes it very dependent on your environment. You might manage to install the antenna but not get the outcome you were expecting. 

What antenna you need depends on your specific location and needs. This blog will outline some of the options that could be right for you. Sometimes it’s a case of trial and error to find the right antenna for you – But that’s where it might be best to leave it in expert hands. 

‘Do I need an Omni-directional or Directional antenna?’

When it comes to installing an external antenna, the first thing you need to decide is whether you need an Omni-directional antenna or a Directional antenna. 

Choosing a Directional antenna

If you know where your nearest mast is and have a clear line of sight, then the Directional antenna might be the one for you. Whilst it’s weaker in other directions, the Directional antenna will have higher reception in one direction, hence why it works well for a clear line of sight with the mast or base station. This is often the better choice if you live or work in a rural area. 

What problems can you have with a Directional antenna? 

Using a Directional antenna can run into issues if the station is congested or goes out of service. E.g. during upgrades. 

Choosing an Omni-directional antenna

If you live or work in a more urban, built up area and aren’t sure where the nearest mast is then an Omni-directional antenna could be the better option for you. Whilst they have a lower overall gain, they are able to attract similar reception from all directions. Because the Omni is looking at a wider area, you may find that it provides better reliability. 

Generally, if you are finding and installing an external antenna yourself, then the Omni-directional antenna is probably the one to try first. 

What problems can you have with an Omni-directional antenna? 

It’s possible that because it’s looking at a wider area, the Omni could attract more interference. If you are able to utilise a well positional Directional antenna then you could get better performance that way. 

‘How much power does my external antenna need?’

So you’ve decided whether you need an Omni-directional or Directional antenna. What do you need to consider next? 

You’ll notice that antennas have gain figures in dB / dBi – This is how the power of the antenna is measured. 

In simple terms, the gain of an antenna is the relative measure of its ability to direct radio frequency energy in a certain direction or pattern. What do the gain (dB / dBi) figures on an antenna mean?

We could go into a lot of complicated detail here, but seeing as we’re writing this blog for someone looking to buy and install their own external antenna, we’ll keep it super simple. 

Basically, the higher the gain (dB / dBi) the better the antenna’s performance and range. Obviously, the higher the gain, the more expensive the antenna will cost. 

When you are at this stage of choosing your antenna, it is worth knowing what bands your mobile operator uses so that you can ensure how the different gain values given for an antenna correspond to the spectrum band you will be using. 

‘Choosing an external antenna – What are the challenges?’ 

As we said above, when you are installing a new external antenna, it’s really important to know:

  • Where and which direction the signal is coming from 
  • How strong the signal is
  • Which bands are being used in your local area by local operators

These are some of the biggest challenges you’ll face when installing your antenna. 

‘How can I find out the spectrum information I need to choose an antenna?’

If you go online to mobile operator’s websites you can find coverage checkers (Vodafone, Three UK, O2 and EE (BT)), but these can be rather vague and not always accurate. It’s worth comparing to what Ofcoms Mobile Coverage Checker says too.

Perhaps the best way to identify which bands are being used by your local operator is to download a relevant app or look up the mobile network details on your Smartphone or router. 

These apps will often just tell you the band number for your own operator rather than tell you the spectrum frequency. You’ll find that operators tend to own several bands, but usually use one band for national connectivity. 

What are the most common 4G Mobile Bands in the UK?

800MHz (Band 20)

900MHz (Band 8)

1800MHz (Band 3)

2100MHz (Band 1)

2300MHz (Band 40)

2600MHz (Band 7)

Remember that 5G uses a different band model and is currently only deployed on the 3.4GHz band. 

‘How do I know where my nearest mast is for installing my new antenna?’

So you’ve made sense of the bands on offer in your area from local operators. Next you need to work out where your nearest mast is and whether it’s the most appropriate for your location. Unfortunately it’s not always the option that looks most logical! 

When you’re choosing the most appropriate mast for your use, you need to consider the following:

  • Forms and features of local land surfaces (artificial and natural)
  • Local surroundings
  • Operator choice

There are apps and websites that can help with this such as Mastdata.com and Cellmapper.net. The Opensignal app could also be of use.

Did you know that operators also have sharing agreements with each other? Just to make things a little more complicated. For example, there is a sharing agreement between Vodafone and O2 as well as between EE and Three. What does this mean? Well it means that a mast could be serving more than one operator. 

How do I use signal strength information to position my external antenna?’ 

If you are able to gain an understanding of signal strength in a few different measurements, then you are more likely to position your antenna correctly. 

Signal strength is measured in quite a few different ways, so we’re going to just focus on a few that you are most likely to encounter. These are:

  • Received Signal Strength Indicator (RSSI)
  • Reference Signals Received Power (RSRP)
  • Reference Signal Received Quality (RSRQ)

These measurements are given by a negative dBm (decibel milliWatts) value. In this situation, negative values are actually good (most of the time). They are negative because they represent tiny yet positive numbers on a logarithmic scale, making them easier to consume. For example, -100dBm would be 0.0000000001 mW.

What is a good RSSI signal? Essentially, the closer to 0 dBm, the better the RSSI signal (although it does get more complicated past a certain point with diminishing returns of data speed). An example of excellent 4G RSSI signal would be -65 dBm. A poor RSSI signal would be -85 dBm. 

RSRP works on a similar scale to RSSI, where an excellent 4G RSRP signal would be -80 dBm.  

RSRQ operates on a very different scale, which means that an excellent signal is anything from around -10 dB (not dBm) and a poor signal would be -20 db.

Interestingly, most mobile modems are able to maintain a pretty fast data connection using a poor signal. Problems may arise however in more rural areas where speeds are slower and stability poorer due to the distance from a mast. 

What factors are most likely to affect signal strength? 

  • Distance to mast
  • Interference from competing signals
  • Router band switching
  • Physical obstacles in the environment like buildings, tall trees etc
  • The weather

Of course, these factors are not in your control, but you need to bear them in mind when positioning your antenna in order to get the best signal possible. 

Feeling confident about choosing and installing your external antenna?

If you are about to choose and install an external antenna to improve your 3G, 4G or 5G mobile broadband signal, then hopefully this blog has given you some of the basic information you need to make your decisions. 

If you’re still feeling a bit daunted, then why not get in touch with one of our Wi-Fi experts? We’ve been installing mobile broadband for clients in and around Hampshire, Cardiff and London for a while and can help identify which antenna solution would best suit your needs. Get in touch today! 

Law Passed to Give Everyone Right to Fast Internet in Germany 

In April 2021, all German citizens were promised the right to fast internet for the first time ever via a new law passed by the Bundestag. 

Whilst that sounds great in theory, what does that actually mean in practise? Giving everyone the legal right to fast internet sounds like a blanket statement, but in reality it will likely affect people differently rather than a universal thing. 

Does everyone in Germany have fast internet? 

Germans have been used to slow internet with pages taking a long time to load and unreliable connections. This promise of faster internet for all should have brought a quicker connection to the people of Germany this summer just passed, with the law forcing an improvement in upload speeds, download speeds and latency. 

Prior to this, internet users in Germany were entitled to functional internet access – At a speed of 0.056 mbps. The recent law aimed to significantly increase this minimum speed.

Who will benefit the most from this law change? 

To ascertain how much the speed needed to increase, the average download and upload speeds plus latency were calculated. 

The highest 20% of internet speeds were not included in the calculation as much of the German population already enjoyed faster internet speeds. The lower 80% had slower connections and would benefit more from the law change. 

With this in mind, those who lived in rural areas were more likely to be positively affected by the law change, as many of the more major cities in Germany already had fast internet available to them. 

For people who were struggling with an unreliable, slow connection (particularly those in rural areas who notoriously grapple with bad internet connections), a commission to a new provider with relocated broadband access would be investigated. 

But even with the law change, will the minimum internet speed be enough? 

Faster internet speeds – What about the UK? 

In UK law, it is the legal right for every home and business to request a decent, affordable broadband connection. 

‘Decent’ is defined as meeting the internet needs of an average family. It has been deemed by previous Ofcom research that a speed of 10mbps (download) is enough to meet these needs, enabling multiple family members to be online at the same time. 

Affordability is based on paying no more than £48.50 per month for broadband. Many people pay much less than this for their internet connection per month. 

The UK saw the government ensure that everyone in the UK had access to broadband speeds of at least 10Mbps by 2020. This universal high speed internet is delivered by a regulatory body as a Universal Service Obligation. 

Post pandemic there has been a huge upsurge in working from home, and people needing strong, reliable, fast internet for business operations at their kitchen table. Think Zoom calls, Teams collaborations, Slack messages and data transfers. That’s a lot more internet traffic than our home networks are used to.

It’s also worth mentioning that in 2022, the average internet download speed is 79.1Mbps. That is significantly faster than the 10Mbps deemed fast enough for the average family home. So whilst the legally mandated minimum is 10Mbps here in the UK, the current average internet speed indicates that this probably needs to be much, much higher. Especially as the European Union has plans for universal broadband of 100Mbps by 2025. 

The increase of those working from home also means that the importance of good upload speeds has also increased. Think remote designers needing to download, edit and upload large files, or group video conference calls. 

In essence, the majority of households need a strong, fast and reliable internet connection in order to work and play from their homes. The current USO doesn’t meet the average speed of internet use across the UK. 

The way we use the internet has changed dramatically over the past couple of years, and we need UK law to reflect this. The pandemic showed the volume of data double almost overnight. 

Our home broadband networks need to reflect the increased prevalence of remote working. This need for fast internet on a reliable connection needs to be written in law, and the USO minimum speed increased.

How Can I Keep My Home Office Wi-Fi Secure?

A couple of years ago, the most you did with your Wi-Fi might have been a Netflix binge, a bit of online shopping and perhaps some gaming. But now, a big percentage of the workforce are working from at least part of the time. 

With the pandemic brought the rise of hybrid working and all of a sudden, people needed strong, reliable Wi-Fi at home so they could continue to work throughout lockdowns. But what about security? 

Just as you wouldn’t want your card details stolen online, your boss probably doesn’t want confidential information at risk on your home network. They won’t want their devices flooded with spyware and malware either! 

So what can you do to keep your home Wi-Fi network secure so you can continue working from home? 

Here are some top tips to help keep those hackers, scammers and cybercriminals at bay, and protect your network and all the devices connected to it. 

How to keep your home Wi-Fi network secure

1. Re-name your home Wi-Fi network

Your wireless router will automatically broadcast your default SSID (service set identifier) in  the list of available wireless networks close by. It is usually listed by the manufacturer or service provider’s name e.g. Sky. This gives hackers a headstart when it comes to breaking into your network, so it’s always a good idea to re-name it. Make sure you choose a name that doesn’t give away any personal info, such as your surname or house number. 

2. Choose a strong, unique password for your wireless network 

Did you know that hackers can make educated guesses when it comes to default passwords, especially if they know the name of the manufacturer of your router? Scary right. Make sure you change the default password to something strong and less easy to guess. You want it to be at least 20 characters long, and include letters, numbers and symbols. The more difficult you make the password, the trickier it is for hackers to get into your network. 

3. Enable network encryption

Most routers come with a feature called encryption, but they tend to come with this turned off. You can help to secure your home WI-Fi network by turning this feature on in settings. You should turn this on as soon as your router has been installed by your broadband provider. The most recent and effective encryption currently available is ‘WPA2’. 

4. Don’t broadcast your network name – Turn this feature off 

We touched on this above when we talked about changing the default name. You can go a step further and not broadcast your wireless network publicly at all. When a person looks up available local networks on their device, your network won’t be visible if you disable name broadcasting. This means that your Wi-Fi is invisible to anyone who doesn’t know how to go looking for it. There’s not many reasons why you would need to publicly display your home wireless network, unless you want to be sharing it with your friends and neighbours! 

5. Keep up with the latest software updates

As with any firmware, software can have vulnerabilities. Thankfully, these are usually swiftly rectified and shared via updates by the manufacturer. By staying up to date with software for your router you can make sure that it has the highest level of security. Hence helping to prevent hackers getting access to your home Wi-Fi network. 

6. How good is your firewall?

If you want to protect your computer or other device from malware, viruses and other cyber attacks then you need a firewall. You’ll find that most wireless routers come with a firewall built in – But do make sure that this function isn’t turned off. No firewall on your router? You’ll want to make sure that you download a decent firewall onto your system to act as a guard to anyone attempting to access your wireless network with ill intent. 

7. Use VPNs to access your network

A virtual private network is a really effective way of keeping your online communications private and secure. You can use your devices on your home Wi-Fi network and connect to a VPN which then checks your credentials and links with another server. Once both sides are authenticated, all your internet communication becomes encrypted – Which means no outside prying eyes can see or access what you’re up to. 

How secure is your home Wi-Fi network? 

It is so important to keep your home wireless network secure – Perhaps now more than every before with the amount of employees working from home. 

You should know exactly how secure your home Wi-Fi network is, and the steps you can take to ensure it is as secure as you can possibly make it. 

You should be aware of all the devices that connect to your home network and ensure that they all have reliable security software installed. That way all of the devices across your home Wi-Fi network will be protected from viruses and spyware, and thus protecting any sensitive information you may be sharing for work. 

What’s the Difference Between Wi-Fi 6 vs Wi-Fi 6E?

Put very simply, Wi-Fi 6E is an extension of the Wi-Fi 6 standard. It basically acts as a fast lane for compatible devices applications and devices which leads to faster wireless speeds and lower latency. 

But there’s more to it than that!  

One main thing to note is that Wi-Fi 6 is backward compatible (meaning it works with previous Wi-Fi standards) whereas Wi-Fi 6E does not offer this. But this is part of the reason how it creates that fast lane. 

Because Wi-Fi 6E is only compatible with Wi-Fi 6E devices, there tends to be lower levels of congestion and interference within the 6 GHz band, hence helping to optimise performance. Wi-Fi 6E devices are becoming more prevalent. 

When did we start using the 6 GHz frequency band? 

Back in July 2020, Ofcom, the UK telecoms regulator, made access to 500MHz of radio spectrum frequency in the new 6GHz band available for home Wi-Fi networks.

This significantly boosted the speed of any indoor home wireless networks exempt from licences via the new Wi-Fi 6 / 6E standard. 

The 6GHz band is a higher frequency than the others, which means it has a lower level of coverage than the 5GHz band due to weaker signal. However, the extra spectrum allows more space for data which means faster speeds. 

The lower coverage means a more secure connection for homes due to less congestion and competition with other local Wi-Fi signals. 

Do we need new infrastructure for Wi-Fi 6E?

As we mentioned above, Wi-Fi 6E is not backward compatible like Wi-Fi 6, so this means that if you want to utilise this Wi-Fi fast lane, you need the relevant devices. So this means that yes, you will need new Wi-Fi infrastructure to use Wi-Fi 6E. 

To support this Wi-Fi standard extension, you’ll need your IT team to look at your current wireless infrastructure and identify what will need to be updated. Think routers, switches, access points and other hardware – Then you can take full advantage of the higher speeds of Wi-Fi 6E. 

It’s worth noting that when you do upgrade your infrastructure in order to support Wi-Fi 6E, you don’t necessarily need to abandon your existing Wi-Fi 6 devices and applications. You can still use these on the 2.4Ghz and 5GHz frequency bands. 

The upgraded devices that can use the 6GHz spectrum will likely help to reduce congestion on these other frequency bands – Providing a better user experience for devices connecting to both 2.5 GHz and 5GHz as well as the Wi-Fi 6E devices on the 6GHz band. 

What are the biggest benefits of Wi-Fi 6E? 

Strong, reliable Wi-Fi has become business critical. Businesses cannot function without a good Wi-Fi network – A network that needs to adequately serve an entire workforce. 

In today’s day and age, this means a workforce with some employees in the office, some working remotely and a mix of both. This hybrid workforce will have a variety of devices and apps that support this way of working. Relying on excellent Wi-Fi!

It’s a data driven world, so your business needs to make sure that the wireless network is secure, reliable, flexible and as fast as possible. Here are the benefits of Wi-Fi 6E that will most help with these business critical Wi-Fi elements. 

Wi-Fi 6E and Speed

The 6GHz band allows data to be transmitted rapidly via Wi-Fi 6E devices like smartphones, laptops and wearable devices. THe other great thing is that because it’s not backward compatible, there are none of those slow legacy devices trying to compete for bandwidth. 

These advantages with speed mean that streaming high resolution video, teleconferencing and even online gaming make Wi-Fi 6E an ideal choice. It’s perfect for these types of bandwidth-intensive applications. Real world examples are AR/VR and transferring large data files such as MRI images within healthcare. 

Wi-Fi 6E and Security

Most businesses and organisations require a secure network. It is mandatory for all Wi-Fi 6E devices to have WPA3 (Wi-Fi Protected Access 3) as specified by the Wi-Fi Alliance. THey ust also not have backward compatibility with WPA2. This increase in security helps to increase the confidence of your network users when moving to the 6GHz frequency band – Especially for those must-trusted connections, 

OWE (Opportunisitc Wireless Encryption Specification)  is also an option for Wi-Fi 6E. Using OWE means that the communication between a pair of endpoints is protected. The Support for Wi-Fi Enhanced Open certification is given for the 6GHz band, based on the OWE. 

What Industries Can Benefit Most from Wi-Fi 6E? 

Wi-Fi 6E really has the ability to transform any and most industries. The ones that are likely to benefit the most with the most transformative impact include the following sectors:

How Can Wi-Fi 6E Benefit the Healthcare Industry? 

We touched on how Wi-Fi 6E could support the transfer of large data files like MRI images. It also helps providers to connect more life-saving devices with fewer data delays and slowdowns. The higher speeds and lack of congestion means higher quality connections with fewer dropouts, making it impactful for telehealth appointments. 

How Can Wi-Fi 6E Benefit the Retail Industry? 

No one likes to be stuck at the point of sale waiting for the card machine to connect and take the payment. Wi-Fi 6E can help to ensure these connections are faster – Not only reducing customer frustration, but also shortening queues. The better the experience for the customer, the better the image of the brand, leading to regular custom and increased sales. 

How Can Wi-Fi 6E Benefit the Education Industry?

Over the last couple of years, we’ve seen how much educational institutions have relied on technology to continue and enhance teaching. Primary Schools up to Universities have immersed themselves in virtual learning which has been carried on even when students have been welcomed back to classrooms. Wi-Fi 6E supports high throughput and concurrent data transmission which makes it ideal for a learning environment. 

Let’s not forget that more and more students are using devices and tech as a part of their daily school lessons. Newer devices that can take advantage of the 6GHz band and Wi-Fi 6E benefits, whilst older devices can still access the 2.4 GHz and 5GHz bands. This results in lighter traffic all round, enhancing wireless connectivity and performance and thus the learning experience. 

How Can Wi-Fi 6E Benefit the Manufacturing and Warehouse Industry?

IoT devices and sensors are becoming more and more prevalent in the manufacturing and warehouse industries. An organisation in this sector should seriously consider using Wi-Fi 6E enabled devices so they can take full advantage of this almost interference-free band. 

The brilliant thing about this is that you can split your network into two. Employees working in the office checking emails and using the internet for day to day admin can continue to use the 5GHz and 2.4 GHz bands. This leaves the Wi-Fi 6E devices on your manufacturing floor or warehouse free to run efficiently uninterrupted. 

This makes Wi-Fi 6E ideal for this industry, helping to meet service level expectations with improved reliability and lower latency.

Wi-Fi 6E Benefits for All

These industries are only a few select ones that are likely to see a huge positive impact from using Wi-Fi 6E. But most businesses and organisations could see improvements in their network by upgrading to this Wi-Fi standard extension. 

In conclusion, various industries and businesses in general can benefit from Wi-Fi 6E with the main advantages being:

  • Higher network speeds
  • Stronger security
  • Access to up to 2.5 times more spectrum 
  • A better voice and video experience 

Are you considering updating your wireless infrastructure to support Wi-Fi 6E? Why not give the experts a call! Here at Geekabit our Wi-Fi engineers can help support you and your business Wi-Fi network with professional and expert advice and installation.