SpaceX Starlink Set to Expand UK Broadband Capacity 

SpaceX is trying to increase the capacity of its ultrafast broadband via LEO (Low Earth Orbit) constellation of satellites by seeking approval from Ofcom to get a variation on its existing gateway. They plan to do this by increasing the number of gateway antennas at multipe UK sites and by adopting additional bands. 

Starlink LEO Satellites

At the moment, Starlink have a network of 5,289 LEO satellites. They orbit the Earth at an altitude of around 500km. 

SpaceX Starlink has approval to expand this number to approximately 7,500 satellites by the end of 2027. 

What is the Cost of Starlink Satellite Broadband? 

For UK customers, costs start at £75 per month. There is an additional cost for the £449 regular home kit which includes a standard dish, router and relevant kit. There is also a shipping fee of £20 on the Standard package. 

By the end of last year, Starlink had a global network of 2.3 million customers (now at 2.6m). 42,000 of those customers were based in the UK (which is up from 13,000 in 2022). Most of these UK customers are based in rural areas. 

Starlink Broadband Speed

The Standard Starlink broadband package promises download speeds of between 25 and 100 Mbps and upload speeds of 5-10 Mbps. It also offers latency times of 25-50 ms. 

What licenses do SpaceX currently hold for Starlink Satellite Broadband?

SpaceX Starlink currently holds multiple NGSO (Non-Geostationary Earth Station) gateway licenses to operate the network. These NGSO gateway licenses help to connect their NGSO system to the internet via large dishes on the ground. 

SpaceX is asking to update 4 of these in order to help boost capacity and meet the growing demand for its broadband services. This follows their recent upgrade to their latest Gen 2 satellites. 

In specific terms, SpaceX want Ofcom to give them permission to increase the number of antennas at 4 of their 7 sites:

  • Fawley
  • Isle of Man
  • Wherstead
  • Woodwalton

Currently, these 4 gateway sites are allowed to operate up to a 9 Ka-band parabolic antennas. These are used to operate their service to UK customers and those in adjacent countries. 

The request for approval to Ofcom from SpaceX includes:

  • An extra 24 antennas at Fawley, Wherestead and Woodwalton. This would bring the total to 32 antennas for these sites. 
  • These new antennas are planned to operate in bands 27.5-28.0525 GHz, 28.4445-29.0605 GHz, 29.4525-30GHz.
  • An extra 32 antennas at the site on the Isle of Man. This would bring the total to 40 for this site. SpaceX already have access to the frequencies they want to operate at for this site (27.5-30GHz).

The regulator’s consultation is open for responses until the 31st May 2024. They state that their initial assessment is that the requested variation from SpaceX should not:

  • Affect other licensed NGSO services
  • Future NGSO services
  • GSO services
  • Fixed links operating in the same user frequencies

Over in the US, SpaceX Starlink already have authorisation from the FCC for their Gen 1 constellation for 4,408 satellites and their Gen 2 constellation for 7,500. 

What are Starlink’s competitors upto?

Inmarsat (Viasat), another satellite operator, has also applied for an NGSO Earth Station Network License for its new GX-10 non-geostationary orbiting satellite system. 

Inmarsat also plan to extend the coverage of their existing Global Xpress satellite system over the polar region. This will provide communication services to government, defence, aero and maritime commercial customers. 

Whilst their primary focus for their service area is latitudes above 65N, their satellites will also provide intermittent service over parts of the UK. 

Their service will use the Ka-band frequencies 19.7 – 20.2GHz and 29.5 – 30GHz, and whilst Ofcom are consulting on this until the 31st May, they have provisionally approved the request. 

Starlink Satellite Broadband Hire for Events from Geekabit

Did you know about Geekabit’s new service? We can provide your event – Indoor or outdoor – with Starlink satellite broadband hire, even in rural areas. 

If your event is being held in London, Hampshire, Sussex, Dorset or Wiltshire and you’re interested in reliable event internet then get in touch with our Wi-Fi experts today. 

Fast Wi-Fi Hire for Events with Starlink

Here at Geekabit we’ve been very busy behind the scenes recently, working at a number of high profile events testing out our new Wi-Fi hire service. 

Our test events included supporting policing events in London, hybrid meetings, rural wedding fairs and a fireworks fundraising event. 

Following the successful deployment of our Wi-Fi hire offering at these events, we are very pleased to announce the launch of our new Wi-Fi Hire for Events, powered by Starlink. 

Are you looking for Wi-Fi hire for your next event?

If you’re looking to hire Starlink Internet for your next event, we can provide a managed expert service.

Have you been let down before by traditional internet suppliers? Our expertly managed Wi-Fi hire service will allow you to have a fast, stable and speedy Wi-Fi network in areas that other suppliers have previously struggled. 

Our Starlink event kit for Wi-Fi hire can be deployed very quickly for even the most last-minute of events, especially helpful in situations where you’ve been let down by another provider. 

Our fleet of Starlink routers and dishes are available to support any event where resilient and fast internet needs to be deployed at short notice.

Whatever the event, wherever it is*

Perhaps you’re running a hybrid Zoom meeting in a rural area, a festival with hundreds of traders requiring card payments, or running an event requiring media Wi-Fi facilities.

Whatever the event and no matter how rural, here at Geekabit our expert Wi-Fi engineers can build you the perfect temporary Wi-Fi network “in the field” for whatever you need the internet for.

This could be for a one-day event, or for an event running over several weeks.

Whilst it is perfect for areas where there is little mobile data connectivity, we can also provide backup 4G/5G service for resiliency and the perfect connection.

Improve reliability with back-haul solutions

You might be thinking that you’ve got pretty good Wi-Fi at your venue most of the time, but even if you have the perfect network and Wi-Fi setup, sometimes a specific event needs multiple back-haul solutions to improve the reliability of the connectivity. Starlink satellite broadband deployed by Geekabit would be the perfect solution.

Starlink Hire from Geekabit

We are thrilled to launch this new Wi-Fi Hire for Events service, powered by Starlink and deployed by Geekabit Wi-Fi engineers. 

*We will happily quote for Starlink Hire in London, Hampshire, Dorset, Wiltshire, Sussex and the Isle of Wight.

We’re excited to see what this new Wi-Fi hire service can do for our clients. Get in touch today if you’re interested in hiring Starlink and securing reliable Wi-Fi for your next event. 

WiFi 8: What is it, What’s the Spec and When Will it Be Released?

As a society we’re always keen to get our hands on the latest technology – But no sooner as it’s in our hands, thoughts are already turning to what’s next. 

You might have barely got to grips with Wi-Fi 6, but with 233 million Wi-Fi 7 devices estimated to enter the market this year, is it any wonder we’re already looking ahead to Wi-Fi 8?

What is Wi-Fi 8?

Simply put, it’s the next generation of Wi-Fi and will be successor to the Wi-Fi 7 (IEEE 802.11be) standard. 

As with previous Wi-Fi standard successions, the aim of Wi-Fi 8 will be to improve wireless performance as well as introduce new and innovative features to advance Wi-Fi technology further. 

Generally this means that in comparison to previous standards, the new one will offer:

  • Faster speeds
  • Lower latency
  • Better performance 

What’s the spec for Wi-Fi 8?

We don’t actually know the specifications of Wi-Fi 8 yet as the details haven’t been officially released. 

But would it even be a technological advancement if there wasn’t speculation on the specifications? 

We are expecting the technical details for Wi-Fi 8 to be finalised and released imminently.

What can we expect from Wi-Fi 8?

Over the years we’ve seen a steady evolution of Wi-Fi standards, with each one playing its own vital role in providing our indoor and outdoor environments with seamless wireless connectivity. 

As the Internet of Things has also evolved over time, each standard has of course had its inadequacies, with a constant push for better. 

So what will the upcoming Wi-Fi 8 standard offer to help with the current connectivity challenges we’ve been facing? 

Wi-Fi 8 is expected to offer us a range of powerful new features and capabilities, designed to provide high-reliability, ultra low latency and support for extremely high node density.

A few of the major features we’re expecting from Wi-Fi 8 are:

  • Multiple Access Point Coordination and Transmission
  • Millimeter Wave (mmWave) Frequencies
  • Low Latency

So let’s take a little look at each of these major Wi-Fi 8 features and what they mean. 

What is Multiple Access Point (AP) Coordination and Transmission for Wi-Fi 8?

When a network has multiple access points deployed, e.g. in buildings and office complexes, they operate on the same radio frequency. This can cause interference and the degradation of network performance. To help alleviate this, the transmissions of the access points can be configured to avoid overlapping channels and coordinated accordingly.

Multiple Access Point (AP) coordination and transmission in Wi-Fi refers to the management of multiple access points in a wireless network to avoid interference and ensure efficient communication between the client devices and the network. 

We can ensure that transmissions do not interfere with each other by using coordination techniques for Access Points. This could look like: 

  • Channel Allocation: Interference can be minimised by configuring Access points to use non-overlapping channels. This can be done manually or automatically using techniques such as Dynamic Frequency Selection (DFS).
  • Power Management: Interference can be avoided by configuring Access points to adjust their transmission power based on their proximity to other access points.
  • Load Balancing: Network loads can be balanced through configuring Access points by directing clients to connect to the least congested access point.

How can Millimetre Wave Links improve Wi-Fi 8?

Improvements in Wi-Fi 8 can be made using mmWave by providing access to a larger spectrum of frequencies. This in turn allows for higher bandwidth and data rates. 

By using mmWave, Wi-Fi 8 can support data rates of up to 100 Gbps. What would this be useful for? This feature would be perfect for things like 4K and 8K video streaming as well as virtual and augmented reality. Other high-bandwidth and low-latency applications like these would also benefit. 

Performance improvements will also be seen in environments with high node density with mmWave technology. Places like stadiums and concert halls will benefit from better coverage with Wi-Fi 8 as well as the reduction of interference between devices.  

Information on a Project Authorisation Request document suggests that Ultra High Reliability technology will be a key part of Wi-Fi 8. It looks like it will be capable of support carrier frequencies in the mmWave bands between 42.5 and 71 GHz and achieving an aggregate throughput of 100 Gbps. 

In comparison to Wi-Fi 7, it’s expected that UHR will offer improvements in maximum latency and jitter for latency-sensitive applications, especially those in the 99 to 99.9999th percentile range. 

Wi-Fi 8 and Low Latency

Why is low latency so important? In this day and age, our modern industries rely on Wi-Fi in many industrial applications, e.g. real-time control systems, remote monitoring, robotic automation. Without fast and reliable communication between devices, the performance of these applications would degrade and cause big problems. 

Even the smallest of delays in data transmission can cause significant errors or delays further down the system, affecting response time as well as negatively impacting production processes and potentially even causing safety issues. 

The amount of data generated and transmitted over Wi-Fi networks is increasing rapidly as more industrial applications adopt the Industrial Internet of Things (IIoT) and other advanced technologies. 

In order for this data to be transmitted accurately and quickly, it’s crucial that there is low latency to reduce delays and bottlenecks. 

Previously, a latency of under 25 ms was achieved with Wi-Fi 7, using Restricted Target Wake Time (R-TWT), Stream Classification Service (SCS) and Quality of Service (QoS) signalling. However, this standard falls short of the current demands of industrial applications which need latencies of less than a few milliseconds. 

Thankfully, the Wi-Fi world is expecting UHR to enhance and improve things in this area by minimising the maximum latency of Wi-Fi. 

When will we be using Wi-Fi 8?

It’s estimated and expected that Wi-Fi 8 could become a market reality in 2027/2028. 

Watch this space! 

Teltonika Network Setup – What is RSSI and RSRP? 

Enable yourself to get better understanding and control of your Teltonika networking solution’s performance with wireless connection support display RSSI and RSRP signal strength. 

Familiarising yourself with RSSI and RSRP metrics wireless network support will help to enhance your Teltonika Networks next steps. 

Wireless Networks are the preferred choice for IoT connectivity

When it comes to IoT (internet of things) applications, wired connections once held dominance. But it is becoming increasingly evident that the preferred choice for IoT connectivity is wireless networking. 

The wireless connectivity market is expected to continue to grow at a compound annual growth rate of 12.8% in the next 3 years, solidifying the trend of networking solutions becoming increasingly dependent on Wi-Fi or mobile networks. 

Due to the versatility and convenience offered by wireless connectivity, this doesn’t come as much of a surprise. 

Without the limitations of wiring, network devices can be configured, monitored and managed remotely – Even if they’re in a different city, country or continent. 

The benefits of using a wireless connection are indisputable.

What are the primary connectivity options? 

There are 2 primary choices when it comes to wireless connectivity: Wi-Fi and mobile technology. 

Wi-Fi 

  • Operates on the IEEE 802.11 standard
  • Supports multiple protocols including 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac (determining the connection’s speed and range)

Mobile Technologies

  • Have evolved from 3G to 4G to 5G
  • Each defines the connection’s speed and capacity available to users and end devices

RSSI and RSRP

Whether your network device operates on Wi-Fi or mobile technologies, if you’re checking out your network then you’ll likely come across RSSI and RSRP metrics. These metrics are vital for displaying the strength and power of your connection. 

What is RSSI, what does it do and how is it measured? 

  • RSSI stands for Received Signal Strength Indicator. 
  • At the moment radio frequency power and quality reaches the receiver, it’s measured by RSSI. For example, a network device or antenna. 
  • RSSI can be used to gauge the strength of the signal in any wireless system, it’s not exclusive to any one type of wireless technology. 
  • Whether you’re using Wi-Fi or mobile technologies, RSSI can provide signal strength data across different types of radio frequency communications. 
  • This means that RSSI can be a good indicator of whether your network devices have robust connectivity.
  • RSSI signal strength is measured in negative values, with stronger, higher quality signal values being closest to zero.
  • NOTE: RSSI values are not standardised across industries, so bear this in mind when interpreting network data for devices manufactured by different companies. 

What is RSRP? 

  • RSRP stands for Reference Signal Received Power and is measured in negative values.
  • RSRP is particularly relevant for mobile technology network solutions like 4G and 5G.
  • It is a type of RSSI measurement, but used to measure the power of mobile signals spread over full bandwidth and narrowband.
  • RSRP measurements can help you to see your network’s overall signal coverage and capacity across all frequencies used for your networking solutions by measuring across the full bandwidth.
  • The quality of your connection in specific frequency ranges can be assessed by measuring RSRP over a narrowband. This can be used to troubleshoot specific issues that could affect signal quality as well as optimising network performance.
  • By using the RSRP signal strength, you can determine a more precise measurement of the cellular connectivity that your network receiver obtains. Having this information can enable you to make informed decision about your network infrastructure as well as Quality of Service Assessments and further improvements.
  • NOTE: Just as with RSSI, the RSRP signal strength can differ by manufacturer.

Your Teltonika Network

Both RSSI and RSRP signal strength indicators are displayed for Teltonika Network devices enabled with Wi-Fi or mobile connectivity devices.

The display of these metrics can be accessed via RutOS. The latest 7.06 version of RutOS has enhanced data visualisation capabilities for mobile connections.

For help with your Teltonika Network, get in touch with our Wi-Fi experts today. Our professional wireless network engineers can help with both Wi-Fi networks and mobile connectivity. 

We can also help with alternative networks other than Teltonika. 

Why Wi-Fi Almost Didn’t Connect At All

It’s hard to imagine a time or place when you couldn’t quickly check your emails or have a scroll through Instagram. Isn’t it the most frustrating thing when you hit a Wi-Fi deadspot? No connection, nothing, no matter how many times you reload the page. We are so accustomed to working remotely (I’m actually looking out at the solent whilst typing this!) and taking the internet with you wherever you go, it’s very difficult to contemplate a life without Wi-Fi and mobile connectivity.  

Did you know that Wi-Fi very nearly didn’t happen in the first place? Wi-Fi almost hit its very own deadspot – And wouldn’t that have changed our lives as we know it! So how did Wi-Fi come about?

When was Wi-Fi officially launched?

On the 25th September 1999, coming up to 25 years ago, Wi-Fi was officially launched. If you think about the fuss that’s made over a new product launch from Apple, then you might have expected the launch of Wi-Fi itself to be a rather flashy affair. 

In reality, it was a bit Big Bang Theory-esque – A convention centre in Atlanta housing 8 technophiles ready to open their jackets to reveal polo shirts emblazoned with the made-up word Wi-Fi. And all in front of a crowd of just 60 people. 

Some of the biggest tech companies, and some smaller ones too, backed the launch enthusiastically. Even the likes of Apple, Dell and Nokia could never have imagined that they were backing such a huge global phenomenon with incredible economic, social and cultural impact across the world. 

It was the summer of ‘99

Think back to the summer of 1999, if you can. The working world was mostly using wired networks via Ethernet cable. LAN’s (Local Area Networks) connected desktop computers at a rate of 10 Mbps. 

Meanwhile, those trying to send emails from home did so to the sound of a modem trying to connect to another modem via repurposed telephone infrastructure. Dial-up internet and 56 Kbps dial up modems clanked and clanged their way online. Arguments were had over who needed to use the computer and who needed to use the telephone. 

There were products for WLAN’s (Wireless Local Area Networks) but these were predominantly just for businesses. The IEEE (Institute of Electrical and Electronics Engineers) official wireless standard specification for these wireless products was 802.11. Not only were these products expensive, they were also 5 times slower than their wired equivalent. 

Despite there being a specified wireless standard, this unfortunately didn’t mean that one standards compliant wireless product would be compatible with another. This was largely due to the fact that there were different ways of interpreting the specification. 

These weaknesses meant that some companies looked elsewhere and chose to support other rival technology alliances – Each with their own aim of becoming the actual standard. 

Wi-Fi’s rival – HomeRF

One of these rival specifications was developed by a consortium of other technology giants – Compaq, Hewlett-Packard, IBM, Intel and Microsoft. Their WLAN ‘HomeRF’ was aimed at consumers (rather than businesses) and was backed by over 80 other companies. In comparison to the other standard, the HomeRF products were not only cheaper but could also communicate with each other. 

With a name like HomeRF (short for Home Radio Frequency) it arguably had a catchier name than IEEE 802.11. They didn’t just have their eyes on the consumer market – They also had big plans for expansion and higher speeds for the business market. 

Despite all of this, the second generation of the IEEE standard, 802.11b was heading steadily for its final approval at the end of September. By the end of the year, there were products due to ship from company 3Com (later acquired by HP along with Compaq). Their products were based on the newer, faster standard and set for release before 1999 ended. 

At the time, networking firm 3Com formed WECA (Wireless Ethernet Compatibility Alliance) bringing together 5 strong advocates for IEEE. Their aim was to make sure that any products using the pending second generation standard would all be compatible with each other. 

Originally tipped to be named ‘FlankSpeed’, connectivity as we know it today was trademarked as Wi-Fi. There began the establishment of the rules by which wireless products could be deemed ‘Wi-Fi Certified.’

What if Wi-Fi had not won out against HomeRF?

Wi-Fi won the wireless standard race, but what if HomeRF had in fact taken the lead? There are ways that all might not have worked out as it has. 

If the second generation standard 802.11b had been delayed, then HomeRF may have been able to sneak ahead. It was only due to a compromise between WLAN industry pioneers (and foes) Lucent Technologies and Harris Semiconductor that meant there was no delay. 

What if FlankSpeed was only available at work?

So what if WECA had decided only to focus on business connectivity? That was a discussed possibility. ‘Go anywhere’ connectivity almost wasn’t on the table. And what if ‘FlankSpeed’ had been chosen over ‘Wi-Fi’? 

A big chunk of today’s workforce rely on being able to bring work home with them. And not just home – What about coffee shops, airports, on the daily commute sitting on the train, the beach even? Nowadays we tend to take work with us wherever we go. 

Had we been using FlankSpeed at the office and HomeRF at home, this would have made things very difficult for anyone working from home. And you can forget about coffee-shop-working and catching up on emails waiting for a plane – It’s possible neither of these public access options would exist. Zones that were not home or the office would have been a no-go (or NoHO (Not Home, Not Office) for working online. Spaces that were neither office nor home would have been a connectivity no man’s land. 

And if you’re wondering about FlankSpeed and Smartphones – That would have been a no as well. The mobile world of online connectivity disappears into the mist, out of grasp. Can you imagine? No, we can’t either. 

Would it have been beneficial to have more than just one wireless standard? 

The benefits of having a singular focus on just the one standard meant that there was more scope for innovation and cost reduction. 

Even if FlankSpeed or HomeRF had gone forth alongside Wi-Fi, it couldn’t have ever become as cheap to run or prevalent and globally penetrating as Wi-Fi. 

Having a universal standard means that retail stores, public spaces and anywhere where we would now expect to be able to connect, could roll it out uninhibited. Had this not been the case, the ability to stream video whilst sipping a coffee or connect to emails whilst sitting on the train may not be available. 

Thinking on a global level, those living in emerging market countries like Nigeria, rely on free Wi-Fi hotspots to be able to connect to the rest of the world. Remote islands like the Bahamas also rely on Wi-Fi to get support following adverse weather conditions like hurricanes. In this way, Wi-Fi provides critical connections all over the world.  

HomeRF folded in 2003 – So how did Wi-Fi succeed so quickly? 

As with all well-laid plans, it’s all in the preparation and timing. With the announcement of the name Wi-Fi and the promise of certified interoperability from WECA, companies investing in this new wireless standard had the assurance that their products would all work together. 

In 2000, 86% of Wi-Fi devices were used for business. Wireless connection in businesses was big business in itself, with chipmakers and PC companies quickly hopping off the fence to support and join Wi-Fi. This led tech giants Microsoft and Intel to jump ship from HomeRF to Wi-Fi. Wireless for business soared in popularity ahead of in the home, which gave Wi-Fi chip volume a boost. This in turn led to closing the cost gap between that and HomeRF, leading it to fold in 2003. 

Since then, over the past 2 decades the Wi-Fi Alliance and IEEE have worked together to represent, guide and oversee Wi-Fi and its subsequent standards. 

The IEEE committee continues to roll-out new standards, and the WI-Fi Alliance makes sure that certified products can communicate with each other. 

So the next time you hit a Wi-Fi deadspot, or find that the Wi-Fi is down in your favourite coffee shop – Stop and breathe. Count your blessings that you can take your work with you wherever you go (mostly) and that you can largely connect via Wi-Fi wherever you need it. 

International Broadband Scorecard Comparison Scrapped by Ofcom UK

Do you wonder how the UK fares against other European countries in regards to broadband and mobile connectivity? Well, you might have to wonder a bit more. 

Ofcom, the telecoms regulator, carries out various reports on performance, looking at things like UK broadband and mobile connectivity compared with other major EU economies like France, Germany, Spain, Italy etc. 

However, it seems that Ofcom have covertly scrapped their annual international comparison despite having been publishing it since back in 2013 when they began the International Broadband Scorecard. 

The report examined various connectivity benchmarks within fixed and mobile broadband performances across different countries, such as:

  • Network availability
  • Take-up
  • Use 
  • Prices  

This then enabled them to measure and compare them with the relative performance of the UK. 

Where did the data come from?

Ofcom normally relied on Omdia-Informa Tech, a third party provider, to supply the data for the non-UK countries included in the report. 

However, as this data is available from Omdia-Informa Tech (as well as other similar telecoms research companies) to anyone who is prepared to pay a fee, Ofcom decided that them stopping their publication of the data would not hinder stakeholders and the like from being able to benchmark the UK broadband offering against the international market themselves.

Scrapping of International Broadband Scorecard a Cost-Cutting Measure?

It would seem to us that this move to scrap the report is likely a cost-cutting measure. This is unfortunate as the reporting was a useful point of comparison to see how the UK was doing in regards to broadband and mobile connectivity on an annual basis when compared without our European counterparts. 

Despite the fact that Ofcom rarely promotes their reports which meant the information they provided was often missed, they have provided some handy and relevant information in past years. 

Can I get the Broadband and Mobile Connectivity Data Somewhere Else?

Thankfully, yes! There is an annual report published from the European Commission that goes some way to compare the UK with EU countries on Broadband and Mobile connectivity (you can find the latest one here). 

If you want to check out the latest summary from the final Scorecard from Ofcom for 2023 (with data from the latter part of 2022) the interactive report is online here

Top UK Mobile Networks for H2 2023 Revealed by RootMetrics Benchmark

How did UK mobile networks perform in the second half of 2023 when it comes to 4G, 5G and mobile broadband?

RootMetrics (now an Ookla company), a mobile analyst firm, has not long published their latest benchmark study of UK mobile networks (4G and 5G) and mobile broadband performance for H2 2023. 

RootMetrics offers scientifically collected and crowdsourced mobile network performance information to consumers and the industry. The firm captures user information by testing network performance when consumers are using their mobile phone for voice or data communications. 

Results of the latest biannual benchmarking report which once again see EE (BT) come out on top against their UK network rivals at Vodafone, Three UK and O2 (VMO2). 

Which UK mobile network is the best for 4G/5G?

When it comes to 5G performance, the picture painted by this recent report isn’t so clear-cut.

This latest study used data from a 5G-enabled, latest model of Samsung smartphone (the actual model was not disclosed in the report). It was purchased from operator stores and tested for both 4G and 5G performance across all 4 primary UK operators within 16 of the most populated UK cities. 

In summary, the study consisted of:

  • 1 latest model Samsung smartphone
  • 4 primary UK mobile operators
  • 16 UK cities
  • 634,942 tests across hundreds of locations
  • 788 locations were indoor
  • 24,179 miles driven during both the day and night

Results were divided into the following categories:

  • Network reliability
  • Speed
  • Data
  • Call and text quality

Scores were given out of 100 (100 being the highest score). As you can see from the data representation from RootMetrics below, EE came out on top across all categories, while VMO2 were found at the bottom of most. 

Interestingly, every one of the 4 primary UK operators saw a decrease in their overall scores when compared to the last RootMetrics report 6 months prior. 

The Overall Scores for H2 2023 (vs H1 2023), in order of best to worst, are:

1. EE – 94.2 (down from 95.9)
2. Vodafone – 90.1 (down from 92)
3. Three UK – 89.3 (down from 90.2)
4. O2 – 86.4 (down from 86.7)

So which is the best UK mobile network? When we look at the average (median) UK download speeds for both 4G and 5G networks, then the strongest data speeds were delivered by EE (68.6Mbps, which was up from 65.1Mbps in the last report).

Vodafone also saw an increase in data speeds, increasing to 34.5Mbps (from 29.4Mbps). Despite O2 improving their data speed score from 15.5Mbps to 19.9Mbps, they still scored the bottom of the 4 providers. Just behind Vodafone to take 3rd place, Three UK fell slightly to 32.3Mbps (down from 34.7Mbps). 

How is 5G performing on UK networks so far?

However, when we look purely at 5G networks, we see a bit of a different picture emerge when compared to the previous report for the first half of 2023. 

Whereas H1 2023 saw Three UK as the fastest median 5G download performance, that award now goes to EE. O2 were unfortunately at the bottom with a score well below the other 3 primary UK networks. The scores for median download speeds for 5G from the H2 2023 report were:

  1. EE – 174.1 Mbps
  2. Three – 165.7 Mbps
  3. Vodafone – 158.3 Mbps
  4. O2 – 68.7 Mbps

What is the availability of 5G on UK mobile network providers? 

As well as 5G speeds, the availability of 5G across UK networks was also tested. 

All 4 of the UK mobile network providers had 5G availability of over 52% during this latest UK wide testing. 

The UK providers in order of 5G availability are:

  1. Three – 57.6%
  2. O2 – 54.5%
  3. EE – 52.3%
  4. Vodafone – 41.9%

You can find more data below for particular regions as well as the most improved cities. 

What can we take away from this report on 5G speed and availability on UK mobile network operators?

So it would seem that even though EE has the fastest 5G speeds, that 5G connection is less available than that of its competitors Three and O2. 

Despite coming second place in terms of speed, Three weren’t too far behind EE and are also slightly more available. 

O2 might have decent 5G availability, but the speed of that connection is pretty dire according to this latest report. 

In terms of 5G speed, Vodafone aren’t too far behind rivals EE and Three, however they are at the bottom of the pile with the lowest 5G availability. 

What more would we like to know about 4G/5G connections across the UK mobile networks? 

If you’d like to read more on this and see further data, head to the full report from RootMetrics UK Mobile Performance Review 2H 2023 here

Whilst this review does shine a light on 5G speeds across the UK and how UK mobile networks are performing, it does only give select information. 

It would be interesting to also see how the networks perform when it comes to upload speeds and latency using 4G/5G connections. 

As you can see from the review, there seems to be a strong focus on urban areas across the bigger cities in the UK. Here at Geekabit we talk a lot about the struggles of rural businesses and more remote locations that still need strong 4G/5G mobile broadband connections. Some more data on the performance of UK mobile networks in these areas would be beneficial and would give a clearer picture of 4G/5G availability and speed across the UK as a whole. 

Connections Boosted by VMO2 5G Drones for Search and Rescue Missions

Here at Geekabit we talk a lot about the problems that rural areas face when it comes to connectivity – Whether it’s mobile or broadband. 

Mostly we’re talking about businesses and homes that struggle with more traditional forms of broadband internet connectivity as well as mobile broadband options. 

But what about organisations that rely on connectivity outside the normal 4 walls of business premises?

For Search and Rescue teams, staying connected couldn’t be more vital. Yet, they’re often plunged into rural and remote locations trying to find someone missing and potentially hurt. 

So how can we make sure that these Search and Rescue teams stay connected with their base and are able to utilise location data? 

Virgin Media O2 (VMO2) has come up with just the solution. They’ve recently developed a 5G-connected drone that is specifically designed to bolster the communication that is so vital to Search and Rescue teams. 

Who is trialling this 5G drone for Search and Rescue teams? 

The first Search and Rescue team to trial VMO2’s 5G drone is Warwickshire Search and Rescue team.

As we said above, communication in remote and vast terrains is absolutely vital but can be a challenge for Search and Rescue teams. As the work of these teams is so time critical, it’s essential that their effectiveness is unhindered by communication and connectivity problems. 

As a Lowland Rescue Unit, the Warwickshire Search and Rescue team play a vital role in locating vulnerable missing persons alongside the police. 

With a 45% increase in callouts between 2020 and 2022, the demand for their services continues to surge with 65 callouts in 2023 – That’s more than 1 per week. 

How does VMO2’s 5G drone work?

The 5G Technical Trials Team over at VMO2 saw this need for critical connectivity and devised a portable solution that uses a network of low earth orbit (LEO) satellites. The portability and compactness of the tech means that it’s small enough to be integrated into a drone. Ideal for vast, remote spaces. 

This easy-to-deploy drone acts like a flying mobile phone mast, enabling Search and Rescue teams to stay connected via seamless 5G connectivity regardless of their location.

What do VMO2 have to say?

Here at Geekabit we love to see how innovative thinking and technological advancements combine to create fresh ideas and impactful solutions to a whole range of problems. 

Head of Technical Trials for Virgin Media O2, David Owens, says:

“This project is a further example of how fresh-thinking and 5G technologies can be combined to provide real societal benefits.

“The solution has the potential to transform how search and rescue teams operate and respond to life-threatening situations, enabling them to make faster and more decisive decisions. We’re enormously proud that our connectivity will be able to help these teams to save lives.”

What do Warwickshire Search and Rescue make of the 5G drone?

Trustee and Search Technician at Warwickshire Search and Rescue, Steve Brown says: 

“With more and more callouts each year, this drone with mobile connectivity is a powerful tool for our team to understand and assess a situation immediately, saving crucial time in life-threatening situations.

“It means we will always be connected, ensuring seamless communication and efficient coordination throughout our missions. As a result of this, we will connect the unreachable, save lives, and inspire a new era of technological possibilities.”

There’s no doubt that this innovative use of 5G mobile connectivity is a fantastic example of how technology can be used in even the most hard-to-reach places. 

In the UK, someone is reported missing every 90 seconds. The more swiftly that person can be located, the better the outcome. For those that have gone missing in a remote area, a Search and Rescue team that can stay reliably connected will be a huge advantage. 

As Portfolio Holder for Fire & Rescue and Community Safety at Warwickshire County Council, Councillor Andy Crump said: 

“The Warwickshire Search and Rescue team do such vital work for our local community by assisting the police in searching for missing people. 

“This new solution from Virgin Media O2 will help the team on these missions and ultimately save many lives. It is further evidence of the positive impact improved connectivity can have upon our society.”

We’re looking forward to seeing how 5G drones and satellite broadband technology can be accessed in more remote areas and rural locations.

Will BT EE Boost UK Mobile and Broadband Services with Starlink? 

It has been reported that National telecoms giant BT (EE) has been in talks regarding plans to harness SpaceX’s ultrafast low-latency broadband via their Starlink LEO (low earth orbit) satellite constellation. This could help improve internet as well as mobile connectivity to those in more remote, rural areas.  

Have BT Used Satellite Technology Before?

This isn’t the first time BT has helped deliver digital connectivity by channelling satellite technology. One example is the SaT5G (Satellite and Terrestrial /Network for 5G) project, supporting the development of solutions for integrating a standard commercially available 5G core network into a live satellite network.

BT is also running trials for rural broadband and mobile connectivity in the UK with OneWeb (rivals of Starlink) backed by the government. 

Recent reports revealed that BT is testing the Starlink system at its Adastral Park research centre near Ipswich. This is just one of the ways they are attempting to solve the continuing issue of getting reliable internet to those in hard to reach locations in the most rural, remote parts of the UK. Of course, consumers can already just sign up to Starlink’s satellite broadband service.

What is Starlink?

Here is some basic information if you’re new to everything Starlink satellite broadband. 

Starlink LEO Satellites

At the moment, Starlink have a network of 5,289 LEO satellites. They orbit the Earth at an altitude of around 500km. 

SpaceX Starlink has approval to expand this number to approximately 7,500 satellites by the end of 2027. 

Cost of Starlink Satellite Broadband

For UK customers costs start at £75 per month. There is an additional cost for the £449 regular home kit which includes a standard dish, router and relevant kit. There is also a shipping fee of £20 on the Standard package. 

Starlink Broadband Speed

The Standard Starlink broadband package promises download speeds of between 25 and 100 Mbps and upload speeds of 5-10 Mbps. It also offers latency times of 25-50 ms. 

Starlink’s New Direct to Cell Mobile Roaming Service

On top of that, Starlink is also in the process of launching its new global Direct to Cell mobile roaming service for use with regular unmodified Smartphones, which would require support from both a mobile network and Ofcom in order to launch in the UK. EE would clearly be a good fit for something like this, given the BT Group’s wider experience in the field. We wrote all about this last week, you can read it here

How Many Customers Do Starlink Have in the UK?

1.83% of Starlink’s current customers are based in the UK. Starlink has 2.3 million customers worldwide, with 42,000 of them residing in the UK. This is up from 13,000 UK based customers last year. 

Will BT EE Utilise Starlink Satellite Broadband for Business Customers?

The report that came out last weekend suggests that the current talks going on between BT EE and Starlink are looking at business broadband solutions and providing mobile connectivity to remote sites such as oil rigs out at sea.

It doesn’t look like BT are interested in just reselling Starlink’s broadband product, but instead are looking at it as a viable way to complement their own terrestrial connectivity services. 

When Will Satellite Connectivity Support Broadband and Mobile Services?

As things currently stand, we don’t know when we see satellite connectivity become fully fledged products that can be a viable solution to supporting broadband and mobile connectivity in rural and remote areas. 

The satellite solutions mentioned in this article are currently still in the early Proof of Concept trial stages. Having said that, although there is no guarantee that BT will use Starlink satellite broadband to bolster their broadband and mobile customers in more rural / remote areas, particularly businesses, it’s certainly exciting to know that discussions are taking place that this could be a possible solution in the future. 

Hire Starlink Satellite Broadband with Geekabit

We’ll be keeping a close eye on how this situation develops. 

As a company committed to helping businesses stay connected with reliable broadband – Using traditional methods as well as mobile and satellite options –  we are excited at the prospect of Starlink satellite broadband going further to help businesses in rural areas. 

If you are interested in Satellite broadband as an internet service provider option for your business or event, then get in touch with our Wi-Fi Experts today. We have Starlink satellite broadband kit ready to hire! Contact us here.  

First 6 LEO Broadband Satellites for Mobile Service Launched by Starlink

The first week of January saw SpaceX launch their first 6 satellites to support their new ‘Direct to Cell’ product. This brings them steps closer to Starlink’s constellation of ultrafast broadband LEO (Low Earth Orbit) satellites being able to offer a global 4G mobile service.

A Quick Starlink 101

Here is some basic information if you’re new to everything Starlink satellite broadband. 

Starlink LEO Satellites

At the moment, Starlink have a network of 5,289 LEO satellites. They orbit the Earth at an altitude of around 500km. 

SpaceX Starlink has approval to expand this number to approximately 7,500 satellites by the end of 2027. 

Cost of Starlink Satellite Broadband

For UK customers costs start at £75 per month. There is an additional cost for the £449 regular home kit which includes a standard dish, router and relevant kit. There is also a shipping fee of £20 on the Standard package. 

Starlink Broadband Speed

The Standard Starlink broadband package promises download speeds of between 25 and 100 Mbps and upload speeds of 5-10 Mbps. It also offers latency times of 25-50 ms. 

What’s New for SpaceX Starlink Satellite Broadband?

SpaceX Starlink signed agreements back in 2022 enabling them to launch a global space-based 4G mobile network. 

The network will be called Direct to Cell and will connect satellites to unmodified smartphones on the ground. 

How will the Starlink 4G Network work?

The satellites with the capability to connect from space to Smartphones on the ground will have an advanced eNodeB modem onboard. This allows network integration similar to a standard roaming partner, essentially acting like a cellphone tower in space.

Supported by mobile operator T-Mobile, originally the first beta test products were supposed to launch by the end of 2023 in select areas of the USA (for example Hawaii, parts of Alaska, Puerto Rico). With the launch of the first 6 at the beginning of January this year, things are obviously running a little behind. 

These first 6 Direct to Cell capable Starlinks were launched aboard a Falcon 9 rocket alongside a batch of 15 other Starlink birds.

The testing phase is expected to eventually involve 840 4G capable satellites, transmitting 4G mobile to roughly 2,000 unmodified Smartphones on the ground. 

According to SpaceX, they plan to launch a basic text service sometime this year, offering SMS, MMS and ‘participating messaging apps’ messaging. 

Voice services (ie. the ability to make calls) and data services (being able to use a slow mobile broadband connection) is due to follow sometime next year (2025). 2025 will also hopefully see the ability to connect to Internet of Things (IoT) devices.

Will we be able to use Starlink 4G mobile in the UK?

Unfortunately at this stage, Starlink doesn’t have supporting access agreements for these services with any cellular providers in the UK. We are one of a few countries with cellular providers yet to support Starlink 4G mobile. 

Hopefully we will know soon who it’s likely to be! Both Vodafone and EE (BT) have experience with satellite solutions (they are testing rival systems!) so they may be the ones to watch. 

Who Are Starlink’s Current Global Direct to Cell Partners?

Providers who are ready to support Starlink 4G mobile in some countries are:


T-Mobile (USA)
Optus (Australia)
Rogers (Canada)
One NZ (New Zealand)
KDDI (Japan)
Salt (Switzerland)
ENTEL (CHILE)
Entel (PERU)

Can Starlink 4G Mobile Compete With Our Current 4G Mobile Broadband Offering?

At this stage, not really. Elon Musk has himself said that these first Direct to CEll capable Starlink satellites can only support data speeds of  “~7Mb per beam and the beams are very big, so while this is a great solution for locations with no cellular connectivity, it is not meaningfully competitive with existing terrestrial cellular networks.”

In other words, Starlink 4G Mobile services will be beneficial to those in rural areas that struggle with more traditional forms of broadband connectivity and 4G cellular networks, but not to those already reliably using 4G networks. 

For those that want the tech bit – Information shared last year on the subject detailed that the Direct to Cell system will be able to provide “theoretical peak speeds of up to either” 3Mbps or 7.2Mbps peak upload (Earth-to-Space) over 1.4MHz or 5MHz bandwidth channels per beam, respectively, and up to either 4.4Mbps or 18.3Mbps on the downlink (Space-to-Earth) over the same bandwidth channels per beam using LTE (4G) technology.

It’s also worth remembering that we don’t yet know the costs of this type of global roaming. To compete with traditional roaming services, it’s going to need to be a competitive cost. Although, those who struggle to get any connection at all where they’re based may be willing to pay a bit more if it means getting a reliable connection. 

What Potential Issues Might Starlink 4G Mobile Be Facing? 

SpaceX are already facing some challenges in the USA. There are concerns about spectrum interference, particularly from AT&T (formerly known as the American Telephone and Telegram Company) who are also in the testing stages of a rival solution AST SpaceMobile and Omnispace who are also combining mobile roaming with the scope of satellite for a global 5G network. 

There are likely to be similar disputes in other markets too, seeing as the Starlink 4G network needs reciprocal access and spectrum agreements with mobile operators. They will also need support from regulators and ground stations across the world. 

Starlink 4G Mobile via satellites from SpaceX is certainly an intriguing development and we’re keen to see how this plays out throughout 2023 and beyond. Let’s watch this space!