Have 5G Download Speeds Fallen in Your Region?

Global leader in network intelligence and connectivity insights, Ookla have revealed via their Speedtest.net platform that 5G based mobile broadband download speeds have fallen over the past year in most UK regions. 

However, despite this fall in 5G download speeds, the overall data speeds for both 4G and 5G have increased. 

Speedtest.net from Ookla is a popular testing service for broadband and mobile network performance. This latest research is based on data collected between the second quarter of 2022 and 2023. 

It found that overall, users have seen a mild increase in their download speed in 10 out of 12 UK regions, across all types of mobile broadband combined.

The highest increase was by 23.4% in the North East, with the lowest increase being in the Yorkshire and Humberside region at 3.9%. (There were a couple of exceptions where the changes were too small to be of note in the South West and Northern Ireland). 

5G Download Speeds Show Statistically Significant Decline

When the study looked at just the data for 5G download speeds, it became apparent that 9 out of 12 UK regions had users with a statistically significant decline. 

3 of these regions experienced a decline of more than 20% in 5G download speeds with another region closely behind:

  • Northern Ireland – 21.65%
  • East Midlands – 21%
  • South East – 20.7%
  • Yorkshire and Humber – 17.8%
Ookla-5G-Speeds-by-UK-Region-Q2-2022-to-2023
With thanks to Open Signal for the graphics

What Can Cause a Decline in 5G Download Speeds?

Typically, we might see a decline like this due to a combination of network maturity and rising customer take-up. Over time, this can cause network congestion, putting pressure on capacity. 

Thankfully, we can combat these issues with technological advances. For example, Ofcom’s future plans are to release more 5G spectrum. We can also benefit from the evolution of 5G technology, such as Standalone 5G. Future improvements like this will help with issues causing declining 5G download speeds. 

How Much Time Do People Spend With an Active 4G/5G Connection?

Ookla research has also found that the proportion of time users spent with an active 4G/5G connection has increased. With the improvements we’ve seen recently with coverage, coupled with the gradual shutdown of 3G (with 2G to follow).

The biggest increase of time spent actively connected to 4G/5G was in Wales (a rise of 4.5%). The smallest increase was 2.4% which was in Yorkshire and Humber. 

Time Spent With Active 5G Connection Also on the Rise

Unsurprisingly, the time users spend with an active 5G connection is also increasing with 5G availability on the rise. 

London – 4% increase (The largest increase of 5G availability)

East Midlands – 3.2%

Eastern – 3%

Wales – 2%

As we already mentioned, this increase in the availability of 5G could explain the decline in 5G download speeds. This is because there are more users than before all trying to use the same data and spectrum capacity. 

However, some regions didn’t see a statistically significant change:

  • Scotland
  • Northern Ireland
  • North East
  • South West
  • West Midlands
Ookla-5G-Availability-by-UK-Region-Q2-2022-to-2023

Which networks were people connected to 4G/5G most?

The data can be further analysed for each network. 

EE – 97.2% (an increase of 2.7% over the last year)

Three – 94% (a larger increase from 85.2% which was the largest of all operators)

Vodafone – 93.2% (an increase of 5%)

O2 – 90.1% (increased from 86.8%)

Which network are you on? Have you noticed any changes with 4G or 5G download speeds in your region? 

What is Beamforming and Will it Make Wireless Better?

The tech world is always evolving and looking on to the next thing – To be better, quicker, stronger. Wireless and Wi-Fi technology is no different – We want to be able to access the best possible connection – Strong, reliable and fast. 

So how does beamforming help with this? 

What is Beamforming? 

Beamforming makes Wi-Fi and 5G connections more precise by utilising the science of electromagnetic interference. 

The original concept of beamforming has actually been around since the 1940’s. In current communication standards, this tech is playing a pivotal role in improving Wi-Fi and 5G among others. 

When beamforming is used alongside MU-MIMO (Multi User Multiple Input, Multiple Output) tech, it can help users to boost their data speeds by accessing more precise connections. 

How Does Beamforming Work?

Using Beamforming means that the resulting connection is faster and more reliable. It works by focusing a wireless signal to a specific receiving device. In this instance, the signal is more focused rather than being spread in all directions like, for example, a broadcast antenna. 

Unless they are blocked by a physical object, electromagnetic waves from a single antenna will radiate in all directions. To specifically target a beam of electromagnetic energy in order to focus the signal in a certain direction, you can use multiple antennas close together to broadcast the same signal at slightly different times. 

These overlapping waves will cause interference which can be good (cause the signal to be stronger) or bad (cause th signal to become weak or undetectable). 

When done constructively and correctly, the electromagnetic waves can be focused to a specific direction – Beamforming. 

We’re going to spare you the mathematics behind the process of beamforming – It’s extremely complex. If you’re a big maths geek you can look it up online and try and wrap your head around it. 

We mentioned earlier that the actual technqiue of beamforming isn’t a new concept and has been around for over 80 years. Wi-Fi and 5G aren’t the only technologies that can benefit from beamforming – Any type of energy that travels in waves can use the concept, including sound. 

Beamforming was originally developed to help in World War II by improving sonar and is still an important part of audio engineering today. 

But let’s get back to our niche – Wi-Fi and 5G tech is where our interest in beamforming lies. 

How does beamforming help Wi-Fi 6?

Wi-Fi 6 is the latest generation of Wi-Fi (also known as 802.1ax but thankfully now with improved naming via the Wi-Fi Alliance!). It succeeds the 802.11ac Wi-Fi standard (now more aptly named Wi-Fi 5). 

In terms of Wi-Fi standards, beamforming has actually been around since Wi-Fi 4 but seen improvements in both Wi-Fi 5 and Wi-Fi 6. Beamforming uses MIMO technology to be able to send out multiple, overlapping signals. 

Since 2016, the use of beamforming with Wi-Fi 5 meant that different receivers can work with different routers, hence making the beamforming techniques used in Wi-Fi equipment are vendor-neutral. 

Beamforming can also be used alongside MU-MIMO technology, allowing multiple users to communicate simultaneously with multiple antennas on the router. Beamforming used in this way ensures that each of the connected clients are efficiently targeted by the router. Data rates and range for signals to specific clients are also improved with Wi-Fi 6 through the increased number of antennas (from 4 to 8). 

What about Wi-Fi 7? 

In the world of tech we’re always looking ahead to the next thing – So what about beamforming and WI-Fi 7? Unsurprisingly, beamforming will also be a core part of Wi-Fi 7 (802.11be).  

Coordinated beamforming will use the capability of modern multi-antenna access points to spatially multiplex their stations, as well as making adjacent neighbouring non-associated stations void.

This technique can actually be used without beamforming via a joint multi-access point sounding scheme. However, a coordinated beamforming process can take advantage of a simpler sequential sounding procedure which will be a part of Wi-Fi 7. 

As each station transmits and receives data to and from a single access point, coordinated beamforming does not require joint data processing. This helps diminish backhaul needs. 

Whilst this limits complexity, it also delivers substantial throughput and latency enhancements.

Other improvements that we’ll see with Wi-Fi 7 and coordinated beamforming will hopefully include access to gigabit speeds and low-latency communications for more busineses and consumers in various applications. 

How does beamforming help 5G? 

With the prevalance of 5G increasing with the roll out of networks for smartphones and other WANs, we’ll be seeing beamforming as a core part of the new technology. 

5G frequencies are unfortunately more prone to being disrupted by objects causing interference, like walls or other similar barriers for example. This is because 5G operates on the millimetre wavelength (mmWave) frequency. 

Beamforming helps with this by creating a more reliable connection. It does by allowing the transmitter to focus the transmission in a specific direction, as explained above. This means the signal is directed towards, for example, a mobile device, vehicle or other IoT device. 

Working with MIMO, beamforming can improve throughput and efficiency by directing beams from a 5G base station in both horizonal and vertical directions  via large numbers of antennas. 

What are the pros of beamforming?

Wi-Fi and 5G tech can really benefit from beamforming. 

  • Information can be transferred quicker and with fewer errors because the signal is of a higher quality due to being focused in a specific direction
  • Users trying to connect to other signals can benefit from less interference because beamforming can reduce and even stop broadcasting in other directions

Are there any cons when it comes to beamforming? 

Whilst beamforming can have benefits for wireless technology, some limitations can lie in the actual process of doing it. 

  • Beamforming requires big computing resources. In some situations, the beamforming calculations would require time and power resources that could make the resulting benefits less worth it
  • Improving affordability means that beamforming techniques are being built into wireless equipment on the consumer market as well as enterprise-grade wireless hardware
  • For the best performance, the transmitter and receiver need to be quite close together. The further away the receiver is from the transmitter, the more the benefits diminish

It’s pretty clear to see that beamforming is a big part of the wireless world, especially in terms of Wi-Fi 6 (and 7) as well as 5G.

Is Poor Connectivity Costing Your SME Money?

Research commissioned by Three found that issues with poor connectivity were costing SME’s in Britain £18.77 billion per year. 

Research found that small to medium sized businesses (including micro businesses) in the UK who give employees work phones are losing out on over 1 hour of work time per employee, per week. Poor connectivity leads to employees being unable to get online or complete their work effectively.

1 hour per week per employee may not sound like a big deal on the face of it, but for medium sized businesses, this equates to 250 hours of working time being lost every single week. 

This loss of working time has a bigger impact on things than you may think. In partnership with YouGov and Development Economics, Three’s research found that:

  • The British economy is significantly impacted by loss of business revenue. The amount of economic output lost is estimated to be £7.7bn per year. 
  • The cost of poor connectivity hits the professional and retail sectors the harders
  • Businesses are already facing challenging times – almost 75% of SME’s are reducing costs

Which industries are hit hardest by poor connectivity?

Two of the largest sectors in the British economy were hit the hardest with poor connectivity – Retail, and Professional Services (including legal, accounting and media businesses).

How much revenue is lost in these sectors due to poor connectivity?

  • Professional Services – Loss of £5.3 billion per year (annual output loss of £2.8bn to the economy)
  • Retail – Loss of £3.7 billion per year (annual output loss of £560m to the economy)

Connectivity isn’t the only challenge for SME’s

SME’s aren’t just facing a challenge with poor connectivity – They’re also facing challenges with the cost of living crisis and talent shortages. 

SME’s are also feeling the heat of rising costs, with 71% looking at where they need to reduce spending. 32% of SME’s are looking to cut costs on things like phone contracts, which they believe they are spending too much on. 

29% of SME’s (and 48% of medium sized businesses) also worry about losing employees due to not having good technology, which is cause for concern when there is also a shortage of talent in the majority of industries.  

Combine all of this with poor connectivity causing problems with work effectiveness and you can see why it’s causing a bit of a headache for small and medium sized businesses. 

Do SME’s need more tech support? 

In order to operate, grow and thrive in business, it is absolutely vital for SME’s to have a strong online connection. 

36% of SME’s believe that better mobile phone connectivity would enable them to perform better. 1 in 5 SME’s are also concerned that their business could get left behind if they don’t know how to use the latest mobile phone technology. 

Unfortunately, almost 50% of SME’s feel that the tech industry uses complex language that makes it difficult to understand the latest technology, creating a barrier for these businesses without proper support and knowledge. 

What can be done to provide SME’s with tech and connectivity support? 

It seems that many tech schemes and concepts are aimed at larger corporate structures, failing to meet the needs of SME’s in a more cost effective way. It’s so important for tech providers to recognise the needs of SME’s and tailor their services to meet them. SME’s need simple, straightforward tech offerings with a level of service that large corporates would expect. 

For a business to be able to perform and for their employees to effectively do their jobs, it all comes down to connectivity. 

For most businesses, connectivity is the core of it all – Poor connectivity is simply not an option. It’s imperative for SME’s to carefully consider the options available to them when it comes to connectivity, tech and mobile. They need a simple, cost effective option that leaves them in control. 

The research outlined above just goes to show how poor connectivity can really hold a business back. Research from The Federation of Small Businesses found similar results which showed that 45% of small businesses experience unreliable voice connectivity (going up to 57% in rural areas). 

SME’s are a big part of the UK economy. To see growth and productivity, we need strong and reliable digital, mobile and vocal connectivity. That includes 4G and 5G accessibility for all. 

Can Geekabit Help?

If you are a SME and are struggling with poor connectivity, then call in the experts. Our experienced Wi-Fi engineers can help at any stage of network deployment – From site surveys to design to installation

We’re only a phone call away, and can help get your business properly connected. 

Thinking you’re too rural? We’ve got 4G for that! Our mobile and satellite broadband options could be just the thing you’re looking for. 

Get in touch with our Wi-Fi experts today.

UK 4G and 5G Boosted With New Small Cells Deployed by EE

Last week we blogged about the shutdown of 3G in the UK and the myths surrounding this phasing out of lower generation tech. If you’ve been concerned about the 4G coverage in your area, then this article might help to put your mind at rest a little bit. 

Last week, EE announced that they had deployed 411 small cells around the UK. This is in addition to the 200 already deployed last year. 

Small Cells to Boost Urban 4G Network

These small cells are different to masts, and are basically tiny base stations installed on buildings and street furniture.

The idea is that it will boost their 4G speed and coverage across their mobile broadband network. 

They’ve claimed that these small cells will allow customers to access download speeds of up to 300Mbps. As always however, this figure should be taken with a pinch of salt. Download speeds are always subject to variability in many areas including:

  • Mobile environment
  • End-user devices 
  • Consumer demand 

The new 4G small cells are carrying a huge 20TB (TeraBytes) of data traffic every day. 

Whilst masts and larger base stations can transmit over large distances, these newly deployed small cells are designed to transmit over shorter distances and more limited coverage. 

They are used for urban areas where mobile network access is likely to be busy – Like shopping centres, airports and ports. 

Can Rural Networks Benefit from Small Cell Deployment? 

Whilst these small cells are really useful for urban areas, they can also be really valuable for boosting network coverage in rural areas too. 

Used in a similar way as in urban areas, the small cells would be deployed on things like lampposts, street kiosks and CCTV columns. 

Working in just the same way as urban areas, these small cells in rural locations would also help boost 4G coverage. 

How Have EE Chosen Where to Deploy 4G Small Cells?

In order for EE to identify the best locations to deploy their small cells, they use network analytics. 

The small cells are built by Nokia and access both licensed and unlicensed spectrum bands. They harness 1800MHz and 2600MHz on the 2.6GHz band (licensed) as well as the unlicensed 5GHz spectrum bands. 

Where Have EE Deployed New 4G Small Cells?

The deployment of 411 new 4G small cells has been rolled out to various locations across the UK. These include:

  • Birmingham
  • Brighton 
  • Sheffield
  • Swansea
  • Leicester
  • Coventry
  • Wolverhampton
  • Southampton 
  • York. 

There will also be ‘seasonal hotspots’ to handle extra network traffic in popular UK holiday destinations. These include:

  • Newquay
  • Paignton
  • Salcombe
  • Southend-on-Sea 
  • Clacton-on-Sea

What Does EE Say About This New Deployment of 4G Small Cells?

James Hope, EE’s Director of Mobile Radio Access Networks, said:

“As demand for data continues to rise, small cells are becoming an increasingly integral part of our mobile network. Our partnership with Nokia ensures customers continue to benefit from our fastest 4G speeds even at the busiest times and in the most congested of locations, and we’re proud to pass another milestone in this project as we continue to invest in improving the UK’s best mobile network* up and down the country.”

What Does the Future Hold?

Good news! It seems like this latest deployment is only the beginning. According to EE, the plan is to deploy a hundred more small cells over the coming months. 

These will be deployed both in cities with existing small cell infrastructure as well adding new towns and cities to the growing list. 

Will Small Cells Be Used to Boost 5G Coverage?

EE also said that they would be doing a trial where small cells would be used to accommodate the 5G network. 

Thankfully, Nokia’s AirScale portfolio can upgrade to 5G in a smooth and consistent manner. 

Could 4G Mobile Broadband Work For Your Home or Business?

If your home or business premises struggles with more traditional forms of broadband and you’ve been considering 4G mobile broadband as your primary network then get in touch with our Wi-Fi experts today.

We are installers of permanent and temporary 4G Broadband throughout the county, for offices, homes, construction sites and events.

You can call our team on 01962 659 390 during office hours or email [email protected].

We look forward to speeding up your internet using 4G Broadband!

Mythbusting: Will the Shutdown of 3G Cause Digital Poverty?

 Have you seen the recent news reports about the withdrawal of 3G by Mobile Network Operators – And how this move will result in ‘millions of people’ being plunged into ‘digital poverty’ by disconnecting them from the internet?

Much of this reporting goes unchallenged and could be seen as scaremongering – Will the consequences of withdrawing the 3G service actually be this dire? 

How much is 3G actually still used? 

3G is actually rather old by tech standards. We’ve had 2 further generations of mobile technology since 3G (4G and 5G, obviously). And 6G isn’t far behind them. 

Can you believe that Vodafone has been using their 3G service for 18 years? What else in the world of technology is around for so long! Vodafone also happens to be the first MNO to start the 3G withdrawal process. 3G data traffic on their network accounted for just 4% in January 2022. In 2016 it was over 30%. 

Did you know that 4G is available to over 99% of the UK’s population whilst they are outdoors? Unfortunately this does fall to between 80 and 87% for geographic coverage. Although, if we’re comparing, 2G only covers 85-93%. We use 2G for basic data like voice and text services. 

When will we lose 3G and 2G services? 

The government, along with all the major mobile network operators, have agreed that by 2033, 2G and 3G signals will be phased out. 

You might be wondering why 3G is being withdrawn first when 2G is obviously older. Well, there are less devices in operation that are critically dependent on 3G services. 4G has been more successful, mainly due to 3G being negatively affected by overpriced spectrum licensing.

2G, on the other hand, is still widely used for basic voice services and limited data for mobiles, as well as other applications like Smart Metres in home energy monitoring systems and similar solutions making it a great low-power fallback option. Therefore, 2G will be around for much longer than 3G. 

The gradual withdrawal of 3G services will differ slightly by mobile network operator. You can find out more information on your mobile operator’s plans to phase out 3G below:

  • Vodafone UK began the withdrawal of 3G at the start of this year and aims to have phased it out by December.
  • Three UK are phasing out their 3G network service gradually over the next 2 years, with it being switched off by the end of 2024.
  • EE are starting their 3G withdrawal by first moving customers off 3G, with a view to switching the 3G network off early next year. 
  • O2 are yet to publicly announce anything but are part of the plans to switch off both 2G and 3G by 2033 and are likely to follow a similar timeline as those above. 

Is the phasing out of 3G a good thing or a bad thing? 

The recent news reports we alluded to earlier would suggest that the withdrawal of 3G services would disconnect a lot of people from the internet and result in digital poverty for millions. But is the phasing out of 3G really a negative thing, like these reports suggest?

Let’s take a closer look at a couple of the worries surrounding the 3G switch off, and hopefully alleviate them.

‘My 4G signal is weak – Will I be unable to access mobile data?’

We can totally see why this would be a worry. If you find that your 4G signal coverage is weak in your area and your handset often falls back to 3G, it makes sense that you would be concerned that you would be disconnected from mobile data altogether once 3G is switched off. Especially if your fixed line broadband was also poor locally. 

What you need to bear in mind is that when the 3G service is switched off, the spectrum that would have been used for that will then be used for 4G and 5G services instead. This means that those who often find their weak 4G signal defaults to 3G, would see an improvement in 4G signal once 3G has been phased out. Happily, this also means that mobile broadband speeds would also improve.  

Of course, this does depend somewhat on the operator itself and their approach in your area. There is a chance that some people could have issues if their operator wasn’t to prepare the updated coverage after 3G is phased out. Let’s remember that that’s not in the best interests of the operator either, and all MNO’s are committed to minimising any problems caused by the withdrawal of 3G services. 

Don’t forget that a weak 4G signal can actually still be better than a strong 3G signal. The data capability available to you isn’t always accurately depicted by how many signal bars you see on your screen. 

It’s also worth noting that current plans for mobile connectivity mean that coverage and performance are only going to improve. The Shared Rural Network, an industry led project worth £1 billion, is working hard to bring 4G to 95% of the UK in geographic coverage by the end of 2025.  

What do the operators themselves have to say about the potential problem of weak 4G signal? 

It would seem that UK mobile network operators are prepared for the phasing out of 3G and the subsequent effects on 4G signal. 

Vodafone says:

“By repurposing the 3G network – we can grow the UK-wide reach of our more energy efficient 4G and 5G networks instead – this means faster data speeds, higher quality voice call services and a chance to continue improving connectivity in previously ‘cut-off’ areas, including rural communities and the London Underground.”

  • They will be optimising their 4G and 5G networks as a part of their phasing out of 3G. In fact, some of their 3G spectrum has already been re-directed as a part of this plan. 
  • They have also contacted customers of theirs who could be impacted by issues once 3G has been switched off. So no news is probably good news! 

Three says:

 “Retiring 3G enables us to repurpose network assets where our customers need them (4G&5G) … this plan has been carefully developed by our network teams to ensure that it benefits our customers.”

  • A tiny 3% of their network traffic was 3G so they expect minimal disruption
  • They believe their customers can expect “faster downloads, better quality streaming and a more reliable experience” when 3G is switched-off.
  • Ahead of the 3G switch off, Three are upgrading many of their legacy 3G sites and repurposing them for newer technologies.
  • They suggest that customers who have a 4G / 5G compatible handset will not be impacted by the phasing out of 3G. 

EE says:

  • Whilst the re-farming of 3G will be a process that takes time, the spectrum used for 3G is planned to be used for 4G and 5G, just not immediately. The locations that have the highest need (those that are congested or at risk of congestion) will be the initial focus for the reuse of 3G spectrum.
  • This operator is focusing on making sure that their 4G has enough capacity to cope once 3G has been switched off. In areas where they have both a 3G and 4G service, the 3G doesn’t generally reach beyond that of their 4G services. They believe they have the tools to identify if any work is needed on spectrum and in what areas so that they can be prioritised.
  • They are currently refreshing their 4G and 5G network and replacing some 5G vendor equipment. They need to finish this network refresh before they can re-farm the 3G spectrum. Once the work has been completed, it will be easier to use the remaining 5MHz from the 3G spectrum. Upgrades will be a mix of remote and site visits depending on configuration. Only modernised sites will be able to re-farm the 3G spectrum to be used for 4G and 5G, hence why the process will take some time. 

O2 says:

Not a lot… Yet! As we said above, O2 haven’t publicly announced their plans to phase out 3G services like the other operators have so it’s all a bit quiet from the O2 camp. 

‘I have an old device that doesn’t have 4G capabilities – How will I get online when 3G is phased out?’

The DPA (Digital Poverty Alliance) is concerned that people with older, more basic devices that don’t have 4G capabilities will fall into ‘digital poverty’ once 3G is phased out if they rely on that device to get online. 

But is this a legitimate concern? Here are some reasons why this may be an unfounded worry. 

  • There are basic phones that have 4G capabilities that have been available on the market for a number of years. They are generally lower cost than more elaborate devices, at around £20-£50 for the handset.
  • Operators often offer bundles with cheap plans and almost free handsets on the more basic models
  • Some operators and charities give more vulnerable users basic handsets for free, so they only need to pay for the tariff

That being said, we realise that there will be people out there that may currently have a device that doesn’t support 4G. There are options out there so anyone who is worried have a shop around – A basic 4G compatible handset and monthly plan for less than £10 a month are out there. 

The best option if you are concerned is probably to ring your current operator and see what they can offer you. 

How Can You Make Sure You’re Not Affected by the 3G Switch Off? 

We’re not saying that nobody will be affected by the phasing out of 3G services. There are always going to be the odd few where unique cases mean that something goes awry. Let’s bear in mind that some handsets will have better reception than others! 

We’re feeling hopeful that the operators will have planned the 3G withdrawal properly and will minimise the impact on their customers. I guess we’ll find out! 

Saying that, here are a few things you can look out for to try and minimise any disruption to your coverage and connections:

  • Ensure your current handset (or any new one you buy) has VoLTE (Voice-over-LTE) capability. Not all 4G handsets can make calls over the same generation of network technology, but if your handset supports the above it will be helpful.
  • Choose a handset that supports Wi-Fi Calling. Whilst not as common on the more basic handsets, if you have a home broadband connection then this would come in very handy.
  • Anyone with a 4G handset having issues after the 3G switch off should perhaps consider changing mobile operator and see if that fixes the problem. Each operator will have different coverage, varying by site, so it might be worth switching around. This also goes for the above – If you have a VoLTE or Wi-Fi Calling enabled handset but are having issues, it could be the operator.
  • Remember that when making calls and texts, 3G/4G handsets will fall back to 2G if having trouble anyway. 

Despite the sensationalised articles about the phasing out of 3G services in headline news, try not to worry. We deal with technological advances all the time in this modern world. You could choose to see the withdrawal of 3G as an upgrade to 4G/5G instead of a negative.

There may well be teething problems for a small percentage of mobile users, but we’re pretty sure that mobile operators will find a solution that works for all when the time comes to switch off 3G services. 

UK Smartphone Users: Are you Satisfied with 5G Mobile Performance?

UK market research provider OnePoll have recently released new survey data suggesting that 80% of smartphone users who use 5G to get online on their mobile are satisfied with the performance. 

80% of surveyed smartphone users satisfied with 5G mobile service

Commissioned by Green Smartphones (a smartphone comparison website), the poll surveyed 1000 UK based adults who use 5G mobile internet on their smartphone. 80% of the respondents reported being satisfied with both the coverage and the broadband speeds via 5G. 

The other 20% of respondents were split between being dissatisfied (8%) and undecided (12%). 

Over 50% say 5G mobile service meets expectations

The poll also asked the selected UK smartphone users whether the 5G they use on their mobile is faster or slower than they expected.

From those surveyed:

  • 53% said 5G mobile speeds were what they expected
  • 21% said it was faster than they expected
  • 12% said it was much faster than their expectations
  • Another 12% said it was slower than they expected
  • The remaining 2% said it was much slower than they expected

Can 5G live up to the hype? 

Recent news outlets have reported disappointment in the rollout of 5G, criticising the 5G mobile services that are available. 

The survey outlined above from OnePoll would suggest different, with the majority of their respondents reporting satisfaction with their 5G mobile service performance. Only a small percentage of those surveyed reported slower than expected 5G mobile speeds. 

As with most things tech, there is always a buzz and excessive hype with the rollout of anything new. Just like 4G and 3G technology before it, 5G services have been hyped up and over-sold with bit expectations for positive impact on mobile performance. 

Has 5G made fixed line broadband obsolete? No. Are we seeing a 5G-powered driverless car revolution on our roads? No, not that either. 

What we are seeing is an upgrade in mobile capability which is useful and appreciated by both businesses and consumers – Once it’s available to them. 

5G wireless network technology

Let’s not forget that 5G technology still has room to grow so further future improvements are likely. 

The expectation is that 5G broadband speed and network coverage will continue to grow and improve over the coming years. 

And, as is the world of tech, once we’ve welcomed and embraced 5G will open arms, attention will turn to 6G and the wild assertions of the benefits it will bring with it. 

Get in Touch

If you own a rural business and are struggling with broadband connectivity then get in touch with our Wi-Fi experts today. 

Our professional engineers in Hampshire can advise whether mobile broadband could help keep your business connected.

London Underground: 5G Deployed by Virgin Media O2 UK 

Last month, VMO2 became the last of the four primary mobile providers to begin their deployment of their ultrafast 5G mobile broadband service on the London Underground. 

Their 5G mobile broadband has been deployed on the:

  • Central Line – Between Queensway and Holland Park
  • Northern Line – Between Kentish Town and Archway 

5G Mobile Broadband on the Central Line

If you are a commuter on the Central Line, the Underground tunnels between Queensway and Holland Park now have 4G and 5G services following the new roll out. 

You should experience seamless connectivity when travelling through these stations. 

Nestled between Queensway and Holland Park is Notting Hill Gate Station, which has now been upgraded to be a fully 5G station. This means that Central Line platforms and ticket halls at this station will now have this latest mobile network available. 

The stations at Queensway and Holland Park have now had 4G introduced. 

With thanks to https://www.london-tube-map.info/central-line/ for the image

5G Mobile Broadband on the Northern Line

As a commuter on the Northern Line, you should now be able to connect to 5G from Archway to Tufnell Park stations. 

Kentish Town station will also now have 4G connectivity. 

With thanks to https://www.london-tube-map.info/northern-line/ for the image

Shared Platform from Boldyn Networks 

The same network platform from BAI Communications (Boldyn Networks) is being shared by all of the primary operators.

Transport for London have a 20 year concession deal with BAI. This allows them to build the infrastructure needed for fibre-fed mobile connectivity, and then make it available via wholesale. 

Revolutionised Commuting in the Capital

Having Underground connectivity has long been a dream for commuters travelling around London using the tube. 

Chief Commercial Officer for VMO2, Gareth Turpin, says:

“For the first time, our customers can access the latest 5G mobile services deep under London. This is set to revolutionise commuting in the capital, and in the weeks and months ahead we’ll be rolling out ultrafast mobile services at more Tube stations, in tunnels and on platforms to bring high-speed connectivity to our customers as they travel on the Underground.

This is part of our commitment to upgrading the UK and ensuring customers can access our network wherever they are.”

When will all of the London Underground have 4G / 5G mobile broadband connectivity?

The network coverage is set to expand further throughout this year. 

Back in 2020, earlier work by TfL and other mobile operators meant that there are already 4G services on the Jubilee Line between Canning Town and Westminster stations. 

Last month we saw the additions on the Central and Northern Lines outlined above. 

The target is for ticket halls, platforms and Underground tunnels throughout the London Underground network to have 4G and 5G connectivity by the end of 2024. 

Keep your eyes peeled for further announcements! 

Could Mobile Broadband Be Right For You?

If you think your rural home or business could benefit from 4G / 5G mobile broadband then please get in touch with our Wi-Fi experts. We operate across the South of England out of Hampshire, covering West Sussex, Dorset and the Isle of Wight. We are specialists in designing and deploying mobile broadband networks for those who struggle with the more traditional forms of broadband internet. 

Which UK City has the Fastest 5G Speeds? 

Opensignal, an independent global organisation who offer reports and insights into the world’s communication networks, have this month published data revealing the UK’s fastest locations for 5G mobile broadband.

The fastest city for 5G download speeds is Birmingham, coming in at 162.7 Mbps. The fastest region was the West Midlands with 151.4 Mbps 5G download speeds. 

Where does the data come from? 

The numbers in this report come from data collected across hundreds of thousands of devices like Smartphones between November 1st 2022 and January 29th 2023. Primary mobile network operators were then compared across different categories. 

Is 5G faster than 4G?

The study also reported on the uplift in mobile broadband speeds when devices went from a 4G to 5G network in various locations. 

The majority of users found 5G download speeds to be between 3.7 to 5.5 times faster than 4G. The biggest uplift was found in Reading, Berkshire where users enjoyed 5.5 times faster speeds on 5G. London however saw the lowest uplift at a rate of 3.7 times faster than 4G. 

With thanks to OpenSignal for the image 

Is 5G or 4G better in urban or rural areas? 

The report also studied the differences between rural and urban areas when it comes to 5G. You might think that there would be a difference in uplift between these types of areas, but there was actually little difference. For rural areas with 5G, the uplift was 4.7 times faster. In urban areas, the uplift for 5G was 4.5 times faster. 

With this being said, mobile broadband users in urban areas do see significantly faster download speeds on both 4G and 5G networks than those in more rural areas. On 4G networks, download speeds are 23.7% faster (5.8 Mbps) in urban areas. On 5G networks, download speeds are 20.1 Mbps which is 17.6% faster than rural areas. 

5G networks are more limited in rural areas with less coverage. Unsurprisingly, this means that users on a 5G network in an urban area spend more time with an active 5G connection than rural users (9.6% and 6.6% respectively. 

With thanks to OpenSignal for the image 

Where in the UK do users connect to 5G the most?

It will probably come as no surprise that it’s Londoners who are actively connected to 5G networks for the longest.

Unfortunately for us (as we’re based in Hampshire) the South East and South West come very near the bottom of the table when it comes to 5G availability and time spent connected to the network. 

Will mobile network coverage improve in rural areas?

As we mentioned above, the data from this report does reflect on there being a gap between the mobile experience of users in rural and urban areas. 

Thankfully, there is ongoing commitment and work happening to try and improve mobile connectivity in rural areas. 

The UK government and mobile network operators are currently working together on the Shared Rural Network programme to increase the geographic coverage of 4G networks. 

Last year in their 2022 Connected Nations report, Ofcom found that through the SRN and other initiatives, users should be able to get good mobile coverage from at least one operator across 92.2% of the UK. This is a rise of 0.3% from the year before so things are moving in the right direction.

5G Explained: What is Low, Mid, and High 5G?

As you can imagine, here at Geekabit we’re a bit geeky when it comes to all things wireless. It’s really in the name isn’t it?

Our spare time is often taken up with reading the latest on Wi-Fi and other wireless communications. Which of course includes 5G! We read a lot of information related to our field, but a blog from cwnp.com really stood out to us as an excellent explanation of 5G and how it works. 

We couldn’t resist sharing this info with you too! 

Let’s start with the basics – RF

When we talk about low, mid and high 5G we’re referring to the frequencies used. Radio Frequency (or RF) travels in waves – Just like sound or light! In simple terms, RF waves are non-visible electromagnetic waves. 

Let’s make it easier to understand with a bit of visualisation. Imagine you are sitting on the beach, watching the waves as they hit the sand. If you were to count how many waves hit the shoreline in one minute, that would be the frequency. 

In RF, we measure waves per second rather than a minute, but the premise is the same. 

5G Frequencies

Image from cwnp.com

In the above image from left to right, you are looking at 5G low (purple), 5G mid in the middle (turquoise) and then 5G high at the end (red). 

In the sea visualisation, the higher the frequency, the more water is being moved (the more waves hitting the shoreline). In RF, instead of water being moved it’s data. So the higher the frequency, the more data can be moved. 

There is unfortunately a downside to higher frequencies. Whilst they are able to move more data, receiving and processing that data across greater distances is a challenge. 

5G: What are the low, mid and high bands? 

Let’s take a closer look at each one in turn.

5G LOW

The strategy for 5G low is to use the lower band to provide coverage nationwide. This is because whilst it has lower data rates, it travels further. To enjoy the benefits of 5G lowband, the 5G needs to be standalone. This means not using 5G down and 4G up. 

Here in the UK, Vodafone were the first operator to offer customers a trial of their 5G standalone network in January of this year. Customers who opted in to the trial should see better reliability, coverage and battery life. 

5G MID

In 5G mid band we find the sweet spot. Not only do we get a decent range from this band, but its higher frequency allows us to see 600 Mbps to 1 Gbps speeds down. 

Interestingly, the 5G mid band is very similar to Wi-Fi frequencies and travel in a similar way. Where it differs to Wi-Fi is thecarriers ability to transmit at a higher power levels. This means that you can use much weaker signals to a better effect than Wi-Fi. 

This 5G mid band is aimed for use in urban areas, city centres and suburbs. 

5G HIGH

The 5G high band is extremely high throughput (how many units of information a system can process in a given amount of time). This band could see speeds of 10Gbps. 

Unfortunately, because it is such a high frequency, it doesn’t travel well at all. This band works best with ‘line of sight’ as almost any obstruction can significantly block the signal. 

You’re most likely to see this 5G high band in city centres where a mast or tower is put on the tallest building to transmit the signal, and receivers or antennas are put on the roofs of other buildings giving a clear line of sight between the two. 

You can see a visual representation of the 5G low, mid and high bands in the image below, again from cwnp.com with thanks. 

How To Choose and Install an External 4G or 5G Mobile Broadband Antenna

Like with so many of our utilities, we only really notice them when there’s a problem or they’re not working properly. Wi-Fi is just the same! Just like when the power goes out, if your Wi-Fi is on the blink then you know about it – And it is so frustrating! 

Whilst most people are lucky enough to connect to superfast broadband through a wired connection, there are also many rural homes that cannot access and connect to broadband or internet in the same straightforward way. 

Here at Geekabit, we work with lots of people – Businesses and homes – who struggle with the more traditional ways of connecting to the internet and have to turn to mobile broadband through 3G, 4G and 5G. 

And again, many people are lucky to have a business or home within range of a strong enough UK mobile broadband network.

‘Could I benefit from an external antenna?’

There are some more remote rural homes and businesses that find themselves struggling to connect to mobile broadband too. If your business or home is:

– Unable to connect to a decent fixed line ISP 

– Within range of a mobile broadband alternative but find it unstable on various operators

Then you might find it beneficial to get an external antenna installed. But which one do you need? 

Are External Mobile Broadband Antennas Easy to Install?

In terms of actually installing an external antenna, it’s actually pretty straightforward. All you need to do is choose a high, stable location on the outside wall of your house near the roof, and screw the antenna on. Remember to make sure it’s pointing in the right direction (ie. towards the nearest mast). 

You might also choose to mount your antenna on a pole to raise it higher than your house. If you’re going for this option, always make sure that it is stable and won’t cause any damage to the building you are mounting it to. It’s also worth liaising with your local authority before installing a large pole as in some areas, a tall pole could be in breach of planning rules. 

You will also need to drill the cable into the house – It’s very important to avoid any other electrical cables and water pipes whilst you are doing this as well as sealing up the holes afterwards. 

It’s also pretty important to keep the position of your router in mind. Will it be placed near the where the cable feeds into the building? Ideally, the cable between your antenna and router needs to be 5 metres or less otherwise you could find yourself struggling with interference and/ or signal loss. 

If that all feels a little daunting then you can hire a professional installer to do the job for you – Our expert Wi-Fi engineers here at Geekabit can do just this! We operate out of Hampshire, London and Cardiff.  

Whilst the physical aspects of installing an external antenna are quite straightforward, it’s not always easy to choose the right kit. The radio spectrum is variable by nature, which makes it very dependent on your environment. You might manage to install the antenna but not get the outcome you were expecting. 

What antenna you need depends on your specific location and needs. This blog will outline some of the options that could be right for you. Sometimes it’s a case of trial and error to find the right antenna for you – But that’s where it might be best to leave it in expert hands. 

‘Do I need an Omni-directional or Directional antenna?’

When it comes to installing an external antenna, the first thing you need to decide is whether you need an Omni-directional antenna or a Directional antenna. 

Choosing a Directional antenna

If you know where your nearest mast is and have a clear line of sight, then the Directional antenna might be the one for you. Whilst it’s weaker in other directions, the Directional antenna will have higher reception in one direction, hence why it works well for a clear line of sight with the mast or base station. This is often the better choice if you live or work in a rural area. 

What problems can you have with a Directional antenna? 

Using a Directional antenna can run into issues if the station is congested or goes out of service. E.g. during upgrades. 

Choosing an Omni-directional antenna

If you live or work in a more urban, built up area and aren’t sure where the nearest mast is then an Omni-directional antenna could be the better option for you. Whilst they have a lower overall gain, they are able to attract similar reception from all directions. Because the Omni is looking at a wider area, you may find that it provides better reliability. 

Generally, if you are finding and installing an external antenna yourself, then the Omni-directional antenna is probably the one to try first. 

What problems can you have with an Omni-directional antenna? 

It’s possible that because it’s looking at a wider area, the Omni could attract more interference. If you are able to utilise a well positional Directional antenna then you could get better performance that way. 

‘How much power does my external antenna need?’

So you’ve decided whether you need an Omni-directional or Directional antenna. What do you need to consider next? 

You’ll notice that antennas have gain figures in dB / dBi – This is how the power of the antenna is measured. 

In simple terms, the gain of an antenna is the relative measure of its ability to direct radio frequency energy in a certain direction or pattern. What do the gain (dB / dBi) figures on an antenna mean?

We could go into a lot of complicated detail here, but seeing as we’re writing this blog for someone looking to buy and install their own external antenna, we’ll keep it super simple. 

Basically, the higher the gain (dB / dBi) the better the antenna’s performance and range. Obviously, the higher the gain, the more expensive the antenna will cost. 

When you are at this stage of choosing your antenna, it is worth knowing what bands your mobile operator uses so that you can ensure how the different gain values given for an antenna correspond to the spectrum band you will be using. 

‘Choosing an external antenna – What are the challenges?’ 

As we said above, when you are installing a new external antenna, it’s really important to know:

  • Where and which direction the signal is coming from 
  • How strong the signal is
  • Which bands are being used in your local area by local operators

These are some of the biggest challenges you’ll face when installing your antenna. 

‘How can I find out the spectrum information I need to choose an antenna?’

If you go online to mobile operator’s websites you can find coverage checkers (Vodafone, Three UK, O2 and EE (BT)), but these can be rather vague and not always accurate. It’s worth comparing to what Ofcoms Mobile Coverage Checker says too.

Perhaps the best way to identify which bands are being used by your local operator is to download a relevant app or look up the mobile network details on your Smartphone or router. 

These apps will often just tell you the band number for your own operator rather than tell you the spectrum frequency. You’ll find that operators tend to own several bands, but usually use one band for national connectivity. 

What are the most common 4G Mobile Bands in the UK?

800MHz (Band 20)

900MHz (Band 8)

1800MHz (Band 3)

2100MHz (Band 1)

2300MHz (Band 40)

2600MHz (Band 7)

Remember that 5G uses a different band model and is currently only deployed on the 3.4GHz band. 

‘How do I know where my nearest mast is for installing my new antenna?’

So you’ve made sense of the bands on offer in your area from local operators. Next you need to work out where your nearest mast is and whether it’s the most appropriate for your location. Unfortunately it’s not always the option that looks most logical! 

When you’re choosing the most appropriate mast for your use, you need to consider the following:

  • Forms and features of local land surfaces (artificial and natural)
  • Local surroundings
  • Operator choice

There are apps and websites that can help with this such as Mastdata.com and Cellmapper.net. The Opensignal app could also be of use.

Did you know that operators also have sharing agreements with each other? Just to make things a little more complicated. For example, there is a sharing agreement between Vodafone and O2 as well as between EE and Three. What does this mean? Well it means that a mast could be serving more than one operator. 

How do I use signal strength information to position my external antenna?’ 

If you are able to gain an understanding of signal strength in a few different measurements, then you are more likely to position your antenna correctly. 

Signal strength is measured in quite a few different ways, so we’re going to just focus on a few that you are most likely to encounter. These are:

  • Received Signal Strength Indicator (RSSI)
  • Reference Signals Received Power (RSRP)
  • Reference Signal Received Quality (RSRQ)

These measurements are given by a negative dBm (decibel milliWatts) value. In this situation, negative values are actually good (most of the time). They are negative because they represent tiny yet positive numbers on a logarithmic scale, making them easier to consume. For example, -100dBm would be 0.0000000001 mW.

What is a good RSSI signal? Essentially, the closer to 0 dBm, the better the RSSI signal (although it does get more complicated past a certain point with diminishing returns of data speed). An example of excellent 4G RSSI signal would be -65 dBm. A poor RSSI signal would be -85 dBm. 

RSRP works on a similar scale to RSSI, where an excellent 4G RSRP signal would be -80 dBm.  

RSRQ operates on a very different scale, which means that an excellent signal is anything from around -10 dB (not dBm) and a poor signal would be -20 db.

Interestingly, most mobile modems are able to maintain a pretty fast data connection using a poor signal. Problems may arise however in more rural areas where speeds are slower and stability poorer due to the distance from a mast. 

What factors are most likely to affect signal strength? 

  • Distance to mast
  • Interference from competing signals
  • Router band switching
  • Physical obstacles in the environment like buildings, tall trees etc
  • The weather

Of course, these factors are not in your control, but you need to bear them in mind when positioning your antenna in order to get the best signal possible. 

Feeling confident about choosing and installing your external antenna?

If you are about to choose and install an external antenna to improve your 3G, 4G or 5G mobile broadband signal, then hopefully this blog has given you some of the basic information you need to make your decisions. 

If you’re still feeling a bit daunted, then why not get in touch with one of our Wi-Fi experts? We’ve been installing mobile broadband for clients in and around Hampshire, Cardiff and London for a while and can help identify which antenna solution would best suit your needs. Get in touch today!