Can I Use DFS Channels on my Wi-Fi Network?

We’ve recently started to see a rise in customers using DFS channels when operating their Wi-Fi networks, so thought we would write an article all about it in case it’s also helpful for your own network.

What is DFS?

DFS is Dynamic Frequency Selection and is a type of Wi-Fi function that allows WLANs to use 5GHz frequencies (which are reserved for radar, for example, the military, satellite or weather).

What is the benefit of using DFS channels for Wi-Fi?

We’ve written before about how you can improve your Wi-Fi and prevent interference by utilising different channels. The main benefit of using DFS channels taps into this. You can increase the number of available Wi-Fi channels by using DFS channels to use these less-used frequencies.

How can I utilise DFS channels on my Wi-Fi network?

The first thing you need to do if you are wanting to use DFS channels, is to check that your wireless access points and wireless clients support the necessary functionality.

The 5GHz spectrum in the UK is broken into 3 different bands and runs from 5150MHz (5.15GHz) to 5850MHz (5.85GHz). The bands are as follows:

Band A

  • Channels 36 – 64
  • This is used only for Indoor wireless
  • Does not require a license

Band B

  • Channels 100 – 140
  • Can be used both inside and outside
  • Does not require a license
  • Hardware must conform to DFS standards and be DFS enabled

Band C

  • Channels 149 – 161
  • Can only be used outside
  • Requires a license from Ofcom
  • Hardware must conform to DFS standards and be DFS enabled

 

 

Checking DFS Channel Availability

When you enable DFS, the Wi-Fi access points will need to verify that any radar in the proximity is not using DFS frequencies. This is a process called Channel Availability Check and is carried out during the boot process of an AP as well as during normal operations.

Should an AP detect that a local radar is using a certain DFS channel, it will automatically exclude that channel for this list of available ones. This will last for 30 minutes after which time the AP will check again to see if the channel can be used for Wi-Fi transmissions. You’ll be pleased to know that this exclusion of unavailable channels has very little impact on Wi-Fi clients.

DFS channels are not immediately available when an AP boots. This is because the Channel Availability Check can take anywhere between 1 minute and 10 minutes during the boot process.

 

What happens if an AP detects radar use during normal operations?

We know what you’re thinking – What happens if the AP was to detect during normal operations that the channel you are using becomes in use by a proximal radar?

If this happens, then the AP may communicate to its Wi-Fi clients to stop transmitting on that particular channel. The AP will then switch to a different, available DFS channel within the Channel Move Time. This is usually about 10 seconds.

Unlike above, this could affect Wi-Fi clients. An AP won’t always announce that it is changing channels to connected devices. When it switches to the available channel, it will cause those Wi-Fi clients to disconnect from the network and then re-connect to the new channel.

 

Are DFS channels right for my Wi-Fi network?

If you are considering using DFS channels for your Wi-Fi, you need to think carefully about whether business critical operations rely on that connection. If the answer is yes, you might want to avoid enabling DFS and not risk the disconnections caused by DFS frequencies.

 

Can My Christmas Lights Affect My Wi-Fi?

The 1st December means we can officially start talking about Christmas! December 1st also happens to be National Christmas Lights Day which coincides with many people choosing to put up their Christmas tree (if they haven’t already done so!).

So you fight the knot of Christmas lights that you’ve fetched from the loft, stick on the ‘Christmas is Coming’ playlist on Spotify (thank us later) and flick the switch for the moment of truth – And Bublé buffers as soon as the tree lights up. What’s going on?

There tends to be articles that circulate this time of year about how Christmas lights could be interfering with your Wi-Fi. But is it really the Christmas tree lights that’s causing Mariah to falter on that high note?

If you haven’t put your tree up yet, and you’re a bit of a Wi-Fi geek (like us) then why not do a little experiment to see exactly how much your Christmas tree lights affect your Wi-Fi? Test your internet and download speeds before and after putting up the Christmas tree with the lights turned on.

 

Will my Wi-Fi be affected by my Christmas tree lights?

Let’s face it, no one wants to choose between functioning Wi-Fi and a Christmassy home. People need that bit of festive cheer more than ever this year, but we also need to know we can rely on our Wi-Fi to keep us connected with our loved ones over the festive period (and stream all the Christmas movies…).

There are potential Wi-Fi issues that can arise with Christmas tree lights so we thought it was worth running through a few do’s and don’ts to help avoid any internet interference from happening in your home. But first – what’s the reason Christmas lights could cause internet issues?

 

How can Christmas tree lights interfere with Wi-FI?

Christmas lights emit a very weak electromagnetic field which can theoretically interfere with the radio waves being transmitted from your router, thus affecting your Wi-Fi speed. If the lights were to transmit electromagnetic radiation at or around the same frequency, then it is possible that they could slow down your Wi-Fi.

Between the LED or lamp being completely on or off, it can exhibit negative resistance which in turn causes radio energy. This happens less with modern day lights than older ones though (see below for more info on this).

Is your tree lit up to give a soft glow, or does it look like something fresh out of Blackpool illuminations? The more lights you have, the stronger the electromagnetic field will be.

And the closer the router is to the lights, the higher the chance of interference.

So what can you do to ensure that your beautifully decorated Christmas tree doesn’t knock off your Netflix binge of Christmas movies?

 

Geekabit’s Top Tips to Prevent Wi-Fi Interference this Festive Season

 

Rule #1 – Don’t place things on top of your router

Just don’t do it. This doesn’t just go for decorations, but in general. We can’t stress this enough – Don’t put anything on top of your router.

This includes Christmas lights – No matter how festive they look! Don’t put Christmas lights or anything else directly on top of, or too close to, your router.

Whilst it has been reported that routers that were placed too close to Christmas tree lights could be negatively affected by signal interference, if they’re not directly next to each other or on top of each other, it should be fine.

 

Rule #2 – Use a main plug socket

We get it – Christmas is one of those times of year when you’re struggling for socket space and digging out all the extension cables you can find to be able to power Christmas tree lights and all kinds of other lit decorations.

But don’t be tempted to unplug the router and plug it into the extension cable. It will work a lot better, and faster, if it’s plugged into a main socket.

 

Rule #3 – The more modern the lights, the better

There are generally 2 types of light whose qualities have the potential to cause interference.

Older types of Christmas lights that are arranged in a string of low voltage lamps in series with each other and are designed to blink can cause radio interference which can lead to dips in Wi-Fi speed.

More modern Christmas lights use solid-state LED’s and have an external control for flashing which don’t create radio noise. However, it’s worth noting that some LED’s have a chip inside the bulb to control the blink and these devices can also cause interference.

On the whole though, modern lights are definitely less likely to cause you a Wi-Fi problem, so maybe save yourself the annual horror of trying to untangle your 10 year old string of lights and treat yourself to some new ones.

 

Rule #4 – Don’t put your router in ‘high traffic’ areas

Tis the season for family gatherings, friend get-togethers and all sorts of festive shenanigans. Not to mention the big man in red tumbling down the chimney! Humans are great signal absorbers, so put the router in a place where it won’t get blocked by partying people or round bellies that shake like jelly.

 

Did you do the Wi-Fi speed test before and after? We’re pretty sure the results will be rather negligible but we’d love to hear your results!

 

SpeedScore by Geekabit

Your internet speed has never been so important. Connectivity is as important as electricity, water and gas to a home or business. Decisions are made based on the speed you can offer, yet connectivity is often overlooked until it’s too late.

House buyers, tenants, hospitality customers and even employees are getting more tech savvy and starting to ask questions about internet speeds and reliability.

With a decade of providing connectivity solutions to UK markets, we have launched our innovative Internet Connectivity Measurement Platform.

SpeedScore by Geekabit gives you a variety of tools to help provide an independent certification of your internet speeds and connectivity.

Most internet speed tests are not accurate, as they become affected by the use of Wi-Fi, old devices and different test endpoints. You can’t expect them to provide the same results test after test due to a variety of factors.

Our hardware and software is different, resolving these issues and providing a balanced and independent view. We have no affiliation with any connectivity provider or hardware manufacturer, allowing us to create a truly impartial scheme based on scientific measurement and reporting.

Who is SpeedScore for?
Perfect for Estate Agents looking to prove internet connection speeds in properties for sale, landlords looking to provide accurate broadband measurement for potential tenants, and hospitality hosts giving confidence to those looking for a connected stay.

What does SpeedScore include?
The core platform consists of the SpeedScore ConnectBox – plugged directly into your broadband router (available for purchase or hire) and the SpeedScore Platform and App. You can show live scores within your own online marketing, provide exportable reports and download certificates to provide an independent and balanced view from our experts.

Prove your internet speed and connectivity status, when and where you need it with SpeedScore by Geekabit.

We have limited availability for the first rollout of our platform, and are looking for a final few customers for our initial shipping batch. If you would like to take part, please email .

Locations for BLE Beacons

If you’re in the business of Wi-Fi and other wireless technology – Particularly designing and installing networks – Then you’ll likely know how common it is for architects and interior designers to go on at us about placement of wireless devices.

Sure, they realise it’s necessary to have light switches and fire alarms – But wireless access points and the like don’t get the same concessions. Here at Geekabit we firmly believe that network infrastructure is very much a necessity in any building – particularly business premises but homes too.

Bluetooth low energy beacons (or BLE beacons) broadcast to nearby portable electronic devices, enabling smartphones tablets and other similar devices to perform certain actions whilst in close proximity to the beacon.

For these to be successful, they need to be placed in certain places. And whilst we do try to keep everything looking aesthetically pleasing, we do believe that a reliable and consistent network is as important to a building as the design.

Where can BLE beacons be placed?

We’re going to look at a few different potential locations for BLE beacons and how they effect their functionality (and the design aesthetic of the premises).

Near to the Floor

In some buildings, the design means that using any kind of adhesive or screw fitting on the wall would be abhorrent! This is particularly true if the material is fabric, glass or metal. Whilst you will be mounting the BLE beacon near to the floor, you will need some kind od baseboard and will also need to take into consideration any floor cleaning processes. You don’t want the device to get damaged!

Another reason why the floor is a good option, is that it helps inhibit the BLE beacon from being seen from one floor to another. If you have floor holes, like an atrium or stairwell, the map can get easily confused. The floor then acts as a shadow for these types of areas.

Every ‘portal’ (for example, doors from stairways, lifts and lobbies) needs to have a BLE beacon. This is so the app knows to switch maps when navigating a change of floor.

On the Wall

The easiest way of placing your BLE beacon as close to your users as possible, is to place it on the wall.

Wherever a user goes in the building, they should be within 3 or 4 metres of a BLE beacon. The closer they are to the BLE beacon, the better the accuracy. The more BLE beacons you have, the the better any latency will be reduced. It is however worth noting that it takes approximately 2 to 5 seconds for the app to link to the nearest beacon due to it listening out for all the beacons in the vicinity.

On the Ceiling

It’s not ideal, but it will work if you have no other option. As we said above, your users need to be as close to the BLE beacons as possible. Thus, placing the beacon on a ceiling means that at best, the user is always about 2 metres away from it – Even when standing directly underneath it.

The Complicated Bit

That was all quite straightforward, but here’s the geeky bit to explain the why!

The wireless engineering reason behind how these placements work comes down to free space path loss.

FSPL is the ‘attenuation (the reduction of the amplitude of a signal) of radio energy between the feedpoints of two antennas, that results from the combination of the receiving antenna’s capture area plus the obstacle-free, line of sight path through free space.’

In the locations outlined above, we are making constructive use out of FSPL.

Due to the inverse square law of RF propagation, measurement of the power present in a received radio signal in the BLE beacon based on determining the exact location of a radio transmitter is optimal within about 0 to 4 metres.

The typical calibrated output of a BLE beacon is 0dBm (1mW). They operate in the 2.4GHz band on a 2MHz advertisement channel tucked between Wi-Fi channels 1 and 6, as well as one just past channel 11, and another one just below channel 1.)

There can also be some variability between receiver devices in terms of their sensitivity and even based on internal antenna configuration and how the device is held/oriented. For this reason, we assume a +/- 3dB for the purposes of this example.

Based on the Received Signal Strength Indicator (RSSI), when a receiving device sees a BLE beacon, it determines its distance from that beacon, using the beacon’s ID to correlate it with the device’s placement on the map.

When a device sees a beacon at -35dBm, it knows it’s under a metre away. If it sees it at -55dBm, that could be anywhere between 4 and 8 metres away.

The further away you get from the beacon, the wider the margin of error.

You also need to take into account any potential barriers. For example, any walls that get between can also add 3dB or more of attenuation depending on the materials used. This is just the same as when we’ve blogged about the effects of walls and similar barriers on Wi-Fi signal.

Below 1 metre, every time you halve the distance you gain 6dB – so 50cm would be -34dB, 25cm would be -28dB, 12.5cm would be -22dB, and now we’re getting really close to the beacon, and it’s already lost 99% of the transmitted power.

Remember that if you mount them on a metal surface, you gain a little bit back. If your surface is less than one wavelength (~12cm) wide, the maths behind it gets a bit tricky!

What does all this mean for BLE beacon placement?

The main takeaway from all this is that when placing BLE beacons, you should try to get them as close to the receiver as possible which is usually within 4m.

If you are mounting the BLE beacon on a wall, then you need to aim for a height of 1-2 metres maximum. You should also consider the height of traffic going past it – Like the hips, shoulders or trolleys of passing people. You don’t want to damage the beacon or rip it off! (You also don’t want to regularly injure people from bumping into it…)

We mentioned ceilings earlier. BLE beacons can be placed there, but in office buildings that generally means that the receiver is always going to be at least 2m away from it – Even if they were to stand directly underneath. Placing beacons near the floor are approximately a metre closer to the receiver device than one mounted on the ceiling.

What about aesthetic concerns?

Ahh yes. Aesthetics. If you are trying to place BLE beacons in locations where there are particular aesthetic concerns, then you could consider painting the beacons and the mounts to match the surrounding design.

If you are planning to do this, you must make sure that the paint doesn’t contain any metallic materials (lead, aluminium powder, gold leaf, iron oxide etc).

Alternatively, you could also use a vinyl skin to make the beacon more aesthetically pleasing. These can also be used on access points.

If you are planning to do either of these, always check with the vendor to make sure that painting or vinyl skins won’t void the warranty (it does in quite a few cases).

Paintable covers that can snap on to indoor AP’s are also an option which would save you having the paint the beacon directly.

Designing your beacon deployment

As with any radio frequency (RF) planning, you should try and model the BLE access points and beacons.

Make sure you set your BLE coverage requirements to the Received Signal Strength Indicator required for the maximum distance you want to be from the beacon (-52dBm).

You also need to make sure that you are always able to hear at least 3 beacons.

Hopefully this article will have helped you when it comes to the placement of BLE beacons – And how to keep those architects and interior designers off your back!

Could Pesky Pigeons be Interfering with your Satellite Broadband?

A short while ago we blogged about space entrepreneur Elon Musk’s company Starlink – A new satellite broadband service.

In a recent article from the BBC, a cyber-security expert from The University of Surrey talks about the outages he experiences on his satellite broadband – And how he thinks they could be down to pigeons sitting on his dish!

Those who live in rural areas can only dream of fibre broadband – Satellite broadband gives these people a chance for low latency broadband. This particular cyber expert, Professor Woodward, is one the 100,000 beta testers of the LEO (low Earth orbit) satellite broadband system.

And he believes that his satellite dish looks rather like a modern bird bath – That the pigeons have taken a shining to!

It’s definitely not a bird bath though. This fancy little dish sends and receives signals to passing satellites. There is a constellation of 1,700 satellites at a height of approximately 550km (380 miles). You might have seen them in the night sky! They orbit earth about every 90 minutes.

Starlink plan to mobilise tens of thousands more of these satellite to improve their broadband service. However, Space X, the company who operate Starlink, have been slowed down by chip and liquid oxygen fuel shortages.

Whilst it’s not definitive what is actually causing Prof Woodward glitches, expert opinion says that a pigeon sitting on a Starlink antenna could certainly cause a decrease in performance.

Starlink aren’t the only organisation planning to provide satellite broadband. There are quite a few in the pipeline!

  • Project Kuiper from Amazon has a plan to launch 3,236 satellites
  • Canadian company Telesat are planning to put 298 satellites into orbit
  • The EU are making plans for a ‘mega-constellation’
  • China are making plans for their own satellite network
  • OneWeb – Part funded by the UK taxpayer – already have hardware in space like Starlink, with 288 satellites in space

If you’ve not heard of OneWeb, their focus will be on providing internet to businesses, maritime users and the government. They have a deal with BT, which means there is a strong likelihood that they will also provide consumer broadband to rural areas. It could also mean portable 5G cells for hire.

Some people may even be using satellite broadband without realising it! For places where fibre isn’t available, suppliers may run a satellite link. This would feed the local broadband pipe, giving rural homes a connection.

Becoming a beta tester isn’t cheap

If you’re struggling with a rural broadband connection and are sat wondering how much it might cost to become a Starlink beta tester, then read on.

It currently costs about £500 for all of the equipment you will need, plus £89 per month fees.

Thankfully, it’s pretty straightforward to get it all set up. Starlink will provide you with an app that helps identify any potential obstructions when you’re choosing the best spot for your dish.

You’ll want to choose somewhere flat and easy to get to – But worth considering the pigeons too!

Once you connect to the router and the dish is in prime position, you should find yourselves with fast internet.

What are the actual speeds of satellite broadband?

In this example, the average speeds were 150-200 megabits per second (Mbps) download speeds and 10-20Mbps upload. Whilst there may be occasional dropouts, this scenario didn’t experience interruptions in streaming shows.

And for many people struggling for broadband in rural locations, these speeds are a dream come true.

And with Elon Musk hoping to double the top speeds offered to 300Mbps, there seems to be scope for improvement.

What can affect satellite broadband service?

Well, as the blog title implies, pigeons can be a bit of an issue. But there are also other factors that can affect the service that satellite broadband service users receive via LEO satellites.

  • It depends on whether there are a number of other dishes nearby. For this reason, Starlink limits the number of users per coverage area. In a given area, not very many users can have the top speed at the same time. This is because it has a finite capacity it can provide in a given area, so user experience will decrease as the number of nearby users increases.
  • Regulator Ofcom expressed their concerns about how different satellite systems could cause interference. What would you prefer – A slow but reliable connection, or a fast yet intermittent one? For things like Zoom, you’re going to need a continuous connection.

Will the skies become crowded?

Astronomers have actually already started observing how busy the LEO is becoming, and how trails of satellites are interfering with their observations.

The possibility of collisions is also a very real concern. Apparently there have already been reported near misses involving Starlink satellites, with experts warning that the ability to prevent collisions between the many satellite constellations will become increasingly difficult for both humans and algorithms.

This means we may require more technologically advanced solutions in order to keep spacecraft safe in space.

Of course, the number of satellites orbiting earth will depend on the demand for them. There’s not much point sending all these satellites up into space if there isn’t actually a demand for satellite broadband here on earth!

But for those living in rural areas where fibre broadband isn’t possible, satellite broadband could be just the solution.

Just make sure to watch out for the pigeons!

The Fundamentals of a Wireless LAN

We were going to call this blog ‘WLANs for Dummies’ but that seemed a bit harsh so we settled on the fundamentals of a wireless LAN instead.

A wireless LAN, or WLAN, might seem complicated on the surface but actually it really just follows simple laws of physics. If you can understand these and follow them, then there shouldn’t be any reason why you can’t achieve high performance and scalability for your WLAN.

If you can understand the basics of wireless physics, then you can start to plan your WLAN for a successful deployment. It will also help you to troubleshoot an existing WLAN exhibiting issues.

How Does Data Travel Through a WLAN?

First things first – Let’s look at wave properties.

Data transmits, or travels, from one point to another – e.g. between wireless access points – via electromagnetic waves. This energy travels at the speed of light and operate at different frequencies.

The frequencies of these electromagnetic waves are defined by how many periodic cycles are completed by second.

For example:

How is Frequency Measured?

As we said above, frequency is how many wave cycles are completed per second. This is measured in Hertz. A 2Hz waveform is 2 completed wave cycles in a period of 1 second.

How Does Frequency Affect a WLAN?

A phenomenon called Free Space Path Loss is something that causes signal loss when a waveform travels from one point to another. This is what affects how well data travels across a wireless network.

Different wavelengths (frequencies) experience difference signal loss. The lower the frequency, the longer the wavelength, and the longer the wavelength, the further it can travel before signal gets lost.

For example, 2.4GHz have longer wavelengths than higher frequencies like 5GHz.

How is Wi-Fi Signal Loss Measured?

We measure the energy that is associated with received wireless signals in Decibels (dB). We can also measure loss of signal in this way.

Decibels are logarithmic. On the linear domain, when you add decibels it grows exponentially and when you subtract decibels it reduces exponentially.

The 3dB rule

Every 3dB change, there is a doubling of energy (if increasing) or a halving of energy (if decreasing).

As a ratio, this would look like:

If we had the wireless signal energy at
1:10dB

Then doubling it would be
2:13dB

Remembering this rule can help with both analysing the energy associated with wireless signals as well as predicting it.
Similarly, if you add or subract 10dB, it changes by a factor of 10.

The Relationship Between Frequency and Wireless Signal

Let’s take a look at 2.4Ghz and 5GHz frequencies or waveforms. 5GHz is a higher frequency, so has more wavelengths in a given time period. 5GHz has more wireless signal loss (attenuation) than 2.4GHz, and thus is better for high-density areas. 2.4GHz has less wavelengths in a given time period and is better suited for wider coverage. Bear this in mind when you are planning or troubleshooting a wireless network.

How is Wireless Signal Affected by Different Materials?

In an ideal world, you would have a clear line of sight between your wireless points. In reality, this is rarely the case and you will often find things that get in the way and stop the wireless signal from traversing effectively across your network.

Different materials will affect wireless signals and attenuation in different ways.

Materials such as concrete will cause more attenuation of wireless signal than wood.

In scenarios where wireless signals can propagate (the action of spreading) normally, there is no interference from other materials. However, there are some things that can alter the propagation of a wireless signal, causing it to behave differently and potentially become unreliable.

For example, a WLAN environment with metal surfaces may encounter unpredictability with wireless signal due to it reflecting off the metal.
Wireless signal can also be absorbed by certain materials like water or people, causing the signal to falter.

Being mindful of materials during the WLAN planning stage can help ensure the environment doesn’t hinder your wireless network and you have reliable connectivity results.

Co-Channel Interference

Different materials aren’t the only thing that can interfer with wireless signals.

Due to the 2.4GHz and 5GHz frewuency bands being unlicensed, there are no restrictions on people when extending wireless networks with access points.

This means that they can become crowded as well as channels not being assigned efficiently. Both of these issues can cause co-channel interference.

When planning your WLAN it’s important to take these issues nito consideration and plan your wireless network accordingly so as not to risk problems with wireless signal later down the line.

You want your WLAN to be as effective and efficient as it can possible be, which takes planning and wireless network knowledge.

Whilst the 2.4GHz is popular due to its propagation qualities due its waveforms passing through materials like walls more easily and reaching end users at a long distance. This however has meant that its become crowded with competing devices such as cordless telephones, baby monitors and bluetooth devices. This saturation can cause problems with your wireless signal.

In comparison, the 5GHz spectrum has greater availability and relaxed transmission power giving it more flexibility when it comes to wireless networks.

The 2.4GHz band has only 3 channels without any overlap, whereas the 5GHz has 24. This is another reason why the 5GHz band is favoured for high-density WLAN environments.

Understanding Frequency Channels

To ensure you can maximise the performance and scalability of your WLAN, you need to understand how these channels operate and use that knowledge to avoid co-channel interference.

Let’s take an Access Point as an example. An AP will have a specific bandwidth through which it will transmit and receive signals to and from other points. The channel assigned to the AP will be appropriate for the centre frequency of the first 20MHz channel used by the AP.

This bandwidth is specifically the frequency range over which the data signals are transmitted. Peak transmission and power is spread over the range of that bandwidth, with it dropping off at the edges.

These edges are then at risk of meeting other nearby wireless networks and are prone to interference from the ‘noise’ of these other networks.

It’s important to use what you know about channels to prevent the reduction of wireless signal speed and loss of scalability of your wireless network.

In order to minimise interference between neighbouring access points, choose to assign them with non-adjacent channels. Following this will make it easier to scale your network. If you don’t follow this principle, you will likely encounter problems with latency and throughput.

The best way of reducing interference when assigning WLAN channels is to carry out a Wi-Fi site survey. This involves analysing the noise levels across the spectrum so you can make informed decisions for your wireless network.

Call The Experts

If this all sounds a bit complicated, then why not give us a call here at Geekabit? We have Wi-Fi expert engineers working out of Hampshire, Cardiff and London who can take care of all your Wi-Fi woes.

From Wi-Fi site surveys, to planning and installation, we’ve got your WLAN covered. GIve us a call or drop us an email to see how we can help keep you and your business connected.

Ubiquiti Wi-Fi Expert Help

Here at Geekabit, we love Ubiquiti – It’s no secret. We’re often asked what bits of Wi-Fi kit are our favourites, and Ubiquiti is definitely one of them. We use Ubiquiti wireless devices so much that we consider ourselves a bit of an expert when it comes to Ubiquiti Wi-Fi installations. We’ve done quite a few blogs sharing our expert knowledge of Ubiquiti Wi-Fi devices, so this week we thought we’d do a quick round-up on some of the things we’ve touched on.

Let’s start with how Ubiquiti UniFi could help your business. This blog was the first in a series of three looking at the benefits of Ubiquiti UniFi in a business setting. If excellent, reliable Wi-Fi is critical to your business operations, then this is well worth a read.

[Part 1] What is Ubiquiti UniFi and How Could It Help Your Business?

In the above blog, we looked at what Ubiquiti UniFi actually was and how it could function as a network in your business. This next one focuses in on the Controller and UniFi Cloud Key and their expert Wi-Fi function within an effective wireless network.

[Part 2] Ubiquiti UniFi – The Brains

The third in that series of blogs looked at the elements that complete the Ubiquiti UniFi network and how they could provide you with a better connected business. After the last 18 months, we’ve all seen how vital it is to have a reliable connection. This series of 3 blogs on Ubiquiti UniFi highlights how these interconnected devices could be the ideal solution for keeping your business well connected.

[Part 3] Ubiquiti UniFi – The Elements

Ubiquiti Access Points are a staple in our Wi-Fi toolkit. We’re confident that their selection of access points are straightforward to match to our clients needs and satisfy your end users. For a blog that takes you through choosing the right Ubiquiti access point for your business, check out the link below.

How Do I Choose The Right Ubiquiti UniFi Access Point?

Of course, Ubiquiti isn’t the only provider out there. How does it compare to some other top options on the wireless device market? See how it stacks up against popular choices from Meraki and Aruba.

UniFi vs Meraki vs Aruba

With all the Wi-Fi 6 hype, you might be wondering what the choices are in terms of Ubiquiti Wi-Fi 6 products. In that case, you’ll probably want to have a read about the Amplifi Alien – The new Wi-Fi 6 router from Ubiquiti.

Amplifi Alien – The New Wi-Fi 6 Router from Ubiquiti

If you have a large area to cover with your network range, then mesh could be the right option for you. Mesh is essentially like a interconnected grid or net of access points that all communicate with each other, ensuring that even if one goes down you don’t drop your connection. If this sounds like something that could work for your business Wi-Fi network, have a read of the blog below explaining Ubiquiti UniFi Mesh models.

Ubiquiti UniFi – What are Mesh and Mesh Pro Models?

The latest from our Ubiquiti blogs is the range of Ubiquiti airMAX products. With something to match every business Wi-Fi need – from a functional perspective to design aesthetics – This blog will take you through the Ubiquiti airMAX device choices.

Which Ubiquiti airMAX product should I choose?

If you need Ubiquiti Wi-Fi expert help then give us a call here at Geekabit. Our Wi-Fi experts operate out of London, Hampshire and Cardiff and are all competent in Ubiquiti wireless devices.

To get in touch, give us a call or drop us a message.

 

What is Hybrid Broadband?

Is hybrid broadband the answer to your Wi-Fi woes?

It’s safe to say we all want unbreakable Wi-Fi. That’s what we strive to give our home and business clients – Especially ones with Wi-Fi woes!

Despite ‘Freedom Day’ happening earlier this week, many companies, employees and schools are still accessing work and learning from home. That means Zoom calls and Microsoft Teams meetings are here for a while yet. If you’ve ever had you Wi-Fi connection stutter and freeze during an important call or meeting, you’ll understand the frustration that comes with unreliable Wi-Fi.

You may not have experienced dodgy Wi-Fi but are you confident that your Wi-Fi is unbreakable? If the answer isn’t a firm yes then you might be interested to find out more about hybrid broadband and how it could help improve the reliability of your Wi-Fi connection.

You might have seen some TV adverts from BT and Vodafone, publicising their hybrid broadband offerings. But what actually is it?

What is hybrid broadband?

The idea behind hybrid broadband is a bit like a safety net. If your standard broadband connection starts to struggle or fail, it is backed up by a mobile connection via a 4G or 5G network (depending on carrier).

Basically, it provides a complete Wi-Fi service via a fixed landline and mobile provision all in one.

BT’s hybrid broadband Hybrid Connect works via their SmartHub2 router, not only using their broadband service but also offering a 5G back-up via their cellphone carrier EE. You don’t need to be a subscriber of both – Just a BT customer.

This means that should your broadband connection go down – Perhaps because of vandalism of the street-side cabinet, or extreme weather – Then you will still be able to get online via the 5G network.

All internet devices that are connected to your router would automatically switch over to the alternative mobile internet connection in under 90 seconds if a problem was detected with the broadband.

With the ability to purportedly support up to 250 devices at a fast enough speed, this could be a great solution if you and your business operations are heavily reliant on being connected to the internet. Which is a lot of us currently!

Is hybrid broadband guaranteed to work?

Well, unfortunately no. Hybrid broadband is only as good as your 4G / 5G reception. Automatically switching to a 4G network with no reception isn’t going to keep you reliably online!

The good thing is, there is something you can do about this.

If your home 4G connection isn’t as strong as you would like, you will need to make sure your router has suitable external antenna reception. Geekabit can help with this for both home use and business customers!

We’ve helped a lot of customers recently, especially those in rural areas,to  get excellent 4G coverage to boost their Wi-Fi strength.

Here at Geekabit we have the expertise and tech kit to make sure that your antenna is placed in the best place possible for a reliable and strong 4G connection.

You can read more about how we can help with 4G broadband here.

If you think that 4G broadband might be the answer for your home or business Wi-Fi then get in touch with us today – Our Wi-Fi experts from Hampshire, Cardiff and London will be pleased to chat through the options with you.

 

 

Which Ubiquiti airMAX product should I choose?

It’s no secret that we’re big fans of Ubiquiti products here at Geekabit. We often recommend their devices and bits of kit for our clients and business Wi-Fi installations.

This blog is going to look at some of the different Ubiquiti airMAX products there are and which ones might be suited to your business and Wi-Fi needs. There are lots of different options that cover various outdoor wireless scenarios.

 

Point-to-Point or Point-to-Multipoint?

Let’s start at the beginning. First you need to ascertain whether your outdoor Wi-Fi would be best suited to a Point-to-Point (PtP) or Point-to-Multipoint (PtMP) network. These are the two primary deployment methods for distributing any fixed outdoor wireless communications.

Point-to-Point (PtP) – This method connects two locations, usually at a distance of multiple km, and essentially forms an Ethernet bridge.

Point-to-Multipoint links (PtMP): This method can connect three or more locations, via one Base Station (or Access Point) and multiple CPE devices (Stations) connected to the Access Point.

 

Point-to-Point (PtP) Links

Here are some of the Ubiquiti airMAX products with specifications on what wireless environment they would cater for. Whilst there are distances listed below, these are meant as a reference. It’s important to bear in mind that all real-life results have influencing environmental factors, for example, interference and Line of Sight.

Short distance (0-5 km)

NanoBeam 5AC-G2: This is recommended for short links, and exhibits superior performance which is due to the latest airMAX AC technology. It is able to deliver up to 450Mbps of throughput.

NanoStation 5AC Loco: Another good option for short distance links, this is the lowest cost PtP solution that has airMAX AC technology.

NanoStation 5AC: This one is a popular choice when it comes to short link Wi-Fi, and is commonly chosen for video surveillance due to its dual-Ethernet port capability. It also has airMAX AC technology.

Medium distance (5-15 km)

LiteBeam 5AC-23-G2: This is recommended as Customer Premises Equipment (CPE – any device accessing the internet) for most cases. Thanks to the latest airMAX AC technology, it has superior performance and can to deliver up to 450Mbps of throughput.

PowerBeam 5AC-G2: Recommended as CPE for medium or long distance links. Once again it has superior performance thanks to the latest airMAX AC technology. It can to deliver up to 450Mbps of throughput.

PowerBeam 5AC ISO:  This one is very similar to PowerBeam 5AC but offers an alternative for high-noise environments.

 

Point-to-Multipoint (PtMP) Links

When it comes to PtMP outdoor wireless networks, it’s really important to remember that the performance is dependent on both sides of the link. If you are trying to get across long distances, you’ll need to make good choices when it comes to the Base Station and CPE for each case. We’ll be looking at these options below.

The release of Ubiquiti operating systems airOS 6 (for M devices) and airOS 8 (for AC devices) provides backwards compatibility and means that you can upgrade your M sector by simply swapping the M AP for an airMAX AC radio as the AP.

 

Base Stations

You will usually find the location of a base station on the top of a tower, building or mast. Your maximum coverage will be determined by the height of that tower.

Low Capacity and Short distance Base Stations

For short distance base stations with low capacity, take a look at the following Ubiquiti airMAX products. These are ideal for areas with low interference.

Rocket M + airMAX OMNI antenna: This could be a great option for more rural Wi-Fi needs, particularly as it is susceptible to interference. It can support up to 60+ concurrent stations when all devices are airMAX capable.

High Capacity & High-Performance Base Stations

Rocket 5AC PRISM G1/G2 + airMAX AC Sector Antenna: This one’s for the highest performance base stations with carrier-grade system. Eight 45° antennas give 360° coverage. Co-adjacent noise is significantly reduces with airPRISM technology.

Rocket 5AC Lite + Titanium Sector Antennas: For medium-high density areas, this is a high-performance solution. It uses the latest airMAX AC technology plus variable beamwidth (60-120°) antennas for scalable growth.

LiteAP AC: This one is an ultra-lightweight airMAX AC sector + radio. It has incredible performance and disruptive pricing, plus 120° coverage.

 

Customer Premise Equipment (CPE)

One of the great things about Ubiquiti is the range of products and how they can work together to support your wireless network as a whole. If you go for the airMAX CPE to support your Ubiquiti products, you’re also getting centralised SDN management, hotspot/guest portal, advanced SSID/WLAN configuration, routing, switching and more. It’s well worth looking at the whole range available. Or call the experts (that’s us) to see whether Ubiquiti wireless devices could help with your wireless network.

Short distance (0-3 km)  

NanoBeam 5AC-G2: This has slightly greater range than the NanoBeam 5AC-19 M and is more directive.

Medium distance (3-7 km)

LiteBeam 5AC-23-G2: This low-cost CPE has very narrow beamwidth, and MIMO technology. This one is the new industry-standard for airMAX AC CPEs.

PowerBeam 5AC-G2: This option is a highly directive CPE, with better range and lower noise.

Long distance (7+ km)

PowerBeam 5AC-500/620: This one is a higher power device, with a super directive antenna, better range and lower noise. If you’re a design buff then you might also like how it’s more aesthetically pleasing compared to bulky dishes.

Rocket 5AC-Lite + RocketDish LW: You’ll likely find this one the best performing option. It’s higher cost than integrated designs, and can be unsightly as a CPE. It supports IsoBeam accessory for better isolation, which comes with RF chokes.

 

Frequency Options

Let’s talk about frequency. Due to physics and utilisation, each frequency has different characteristics.

Lower frequencies have better propagation characteristics than higher frequencies. You may find that they work better in environments where the Line of Sight is obstructed (for example, by trees). However, these bands may also have higher levels of noise and interference, so it’s very important to select the frequency that works best for your wireless environment.

Let’s have a look at the pros and cons of some frequency bands.

900MHz (M900) – Pros and Cons

  • Better tolerance for trees and small obstacles in comparison to higher frequencies
  • Tends to have higher noise levels
  • Only has a 26MHz bandwidth

2.4GHz (M2) – Pros and Cons

  • It is unlicensed worldwide
  • It only has 3 over-lapping 20MHz channels (1, 6, 11)
  • It tends to be a very crowded band with interference from other devices such as cordless phones
  • 40MHz channelse are not recommended

3.x GHz (M3-M365) – Pros and Cons

  • 300MHz bandwidth in countries where 3.4-3.7GHz band is available
  • It is noise free in most areas
  • Only 25MHz bandwidth in countries where 3.65GHz can be used
  • It requires a license

5 GHz (5AC/AF5/AF5X) – Pros and Cons

  • It is unlicensed worldwide
  • Higher EIRP limits allow higher gain antennas, and long distance links
  • Large amounts of spectrum available, easier to co-locate nearby devices
  • Weaker propagation in comparison to lower frequencies when there are obstacles like trees or walls are present

10 GHz (M10) – Pros and Cons

  • It is noise-free in most cases and is very useful when the 5.8GHz band is crowded
  • It has a very small Fresnel zone
  • It is only available in a few areas
  • It is a licensed band
  • It needs a perfectly clear Line of Sight

11 GHz (AF11FX) – Pros and Cons

  • It is noise-free in most cases and is very useful when the 5.8GHz band is crowded
  • It has a very small Fresnel zone
  • It is only available in a few areas
  • It is a licensed band
  • It needs a perfectly clear Line of Sight

 

Antenna Types

We spoke about the important of each side of the link being effective to ensure the highest performance possible. Now it’s time to talk about the antennas.

High gain antennas also play an important role when deploying a high performance outdoor wireless network. There are two main reasons:

  • They provide high gain amplification of the signal power resulting in higher signals and better link quality.
  • They are highly directional, which gives them spatial filtering characteristics that can help to block noise. This is especially important in noisy environments.

When thinking about the antenna for the base station, you might think it’s best to go for the one that offers the largest coverage area. However, it’s actually better to choose the antenna that covers the smallest amount of coverage that covers your range area. An antenna covering a larger area than needed could be more susceptible to interference due to a wider beamwidth, causing a decrease in scalability and performance.

Here are the categories of antenna.

Yagi: Directive, used for PTP and CPE applications. Frequently used in low frequencies, such as 900MHz, due to size

Grid: Directive, used for PTP and CPE applications. Great wind-loading properties. However, this type only works in one polarity (1×1), so lower performance than 2×2 antennas (Dish, Panel, etc.)

Panel: Directive, used for PTP and CPE applications. Compact design is very attractive in situations where dishes are not preferred.

Dish: Most Directive, highest performing airMAX antennas for PTP applications. Usually larger and heavier.

Omni: Provides 360 degrees of horizontal coverage (omni-directional). Ideal for low capacity and wide-coverage AP / Base Station applications)

Sector: Ideal choice for high performance Base Stations. Offer higher gain and directivity than omnidirectional antennas. Usually offered in 45, 60, 90, or 120 degree options.

This list is not conclusive. You can find all of the current airMAX antennas here by looking at the antenna section.

For more information in general about Ubiquiti airMAX options, head to their website.

 

No idea where to start?

Here at Geekabit, our expert wireless network engineers have the knowledge and experience to help you deploy a high performing outdoor wireless network in Hampshire, London and Wales. If you would like to discuss your Wi-Fi network requirements, please don’t hesitate to get in touch with us. Our Wi-Fi experts are only a phone call away!

 

4G Office Surveys – Hampshire, London and Wales

This week we spoke to a client needing a 4G office survey for their workplace, to see if 4G would be a viable internet option for their business, as well as identifying which network would be best for them.

Why would I want a 4G Office Survey?

4G broadband is an increasingly beneficial internet service provider for many homes and businesses, especially those in rural areas and places where BT Openreach cables can’t get to.

Here at Geekabit we take an unbiased approach when it comes to Mobile Network 4G surveys. Our aim is to gain an understanding of the mobile coverage on your premises and ascertain whether 4G broadband would be a good choice for your internet needs.

It is also hugely important for those who are considering moving their workforce to a new office building and need the guarantee of coverage. Even in today’s “Wi-Fi calling” world, we still need solid mobile phone coverage.

Our testing can assess any likely impacts on mobile network coverage in your office, from external factors such as wind farms and other tall buildings, to internal influences like wall composition.

What does a 4G Office Survey Involve?

Our equipment for a Mobile Phone Coverage Survey measures key performance indicators for 2G, 3G and 4G reception on various networks so you can be sure that 4G broadband is the right decision for your home or business.

The hardware we use to carry out in-building 4G office surveys uses advanced mobile network signal receiving and processing technology.

These 4G office surveys can be used to ascertain the internal mobile network coverage of your office or business premises, and identify any potential mobile network coverage problems early on before you commit to using 4G broadband for your internet provider.

There are some factors that could cause signal penetration problems (attenuation) such as different building materials and window glazing, but a 4G office survey can give you peace of mind that the 4G network you choose will be a reliable source of internet for your rural home or business.

Wired Certification through WiredScore

If you are a business landlord or even rent out a private property, carrying out a 4G survey for the premises can be extremely beneficial.

Back in 2015, the Greater London Authority launched a scheme through WiredScore – An initiative launched by the Mayor’s Digital Connectivity Rating Scheme.

This scheme gives a clear picture to tenants about the connectivity in their potential offices.

Over the past 18 months, we’ve all seen how imperative technology is – Where would we be without Zoom and Microsoft Teams? Technology plays a huge role in the success of businesses across the UK, not just London.

The capacity for connectivity in any given premises is an extraordinary marketing opportunity when it comes to landlords trying to get businesses to sign up to lease their office space. Commercial landlords and developers need to be aware of how important connectivity is to a property or premises – And a 4G office survey is a fantastic way to obtain this.

Good connectivity, especially when it comes to 4G in more rural areas, is a great asset to a business and will be top of the list of any business looking to secure new premises.

WiredScore provides the connectivity accreditation scheme to help overcome the challenge of proving your premises has the internet connection needed for a business to succeed. A WiredScore rating is a global rating scheme for digital connectivity and helps landlords to assess, improve and promote their premises.

Get in touch

If you’re struggling with wired broadband, and not getting the reliable internet connection you need in your rural business or home, then 4G could be a fantastic option for you.

It can feel like a big jump to give up on your wired broadband connection and opt for 4G – Which is where our Cell Coverage 4G survey comes in.

We can tell you exactly whether 4G broadband would work for you, and which network would be most reliable.

Relocating and moving offices comes with a raft of expense and issues which interrupts the daily workflow and output. Being confident that your team can communicate with your customers and stakeholders is a key consideration.

You can check out a previous blog of ours where we look at a few of our client case studies where 4G broadband was absolutely the best choice.

To see if 4G broadband would solve your Wi-Fi woes, get in touch with us today to arrange your mobile phone coverage survey. Let’s see if 4G broadband is the answer you’ve been searching for!