Is Wi-Fi HaLow a Better Wireless Option than Wi-Fi 5 and 6 for IoT?

Wi-Fi HaLow has quite the list of benefits when it comes to Internet of Things applications. With high bandwidth, long range, unlicensed spectrum, low power, and less complexity than Wi-Fi 5 and Wi-Fi 6, Wi-Fi HaLow could well be a better option. 

What is Wi-Fi HaLow?

Image from https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-halow with thanks

The Wi-Fi Alliance has coined the IEEE 802.11ah Wi-Fi standard as Wi-Fi HaLow, as it will be known in the wireless market. It was approved back in September 2016, and then published in the following May. 

Wi-Fi HaLow is a new version of traditional Wi-Fi, offering:

  • Long range
  • Low power
  • Low speed

Wi-Fi HaLow is most likely to be deployed within the Internet of Things market, on things such as:

  • Sensors
  • Wearables
  • M2M (Machine to Machine) applications
  • Smart buildings
  • Smart cities

What are the benefits of Wi-Fi HaLow?

Wi-Fi HaLow has the ability to connect low-bandwidth devices to IP networks, including the internet. It also supports enough bandwidth to handle HD Quality video.

Perhaps one of the great things about Wi-Fi HaLow is its usefulness in rural communications as well as offloading cell phone tower traffic. 

Whilst there are similar low-power standards, like 802.11af, there are differences. For example, 802.11af operates in the television white space spectrum in VHF and UHF bands, whereas Wi-Fi HaLow is easier to deploy due to operating in the unlicensed bands. 

There are of course similar technologies that utilise the unlicensed spectrum, but Wi-Fi HaLow also has advantages over some of them due to them being built on proprietary standards. 

The requirement of getting proprietary hardware in order to get IP connectivity to the client devices also means that some other similar technologies are more complicated to deploy than Wi-Fi HaLow.

HaLow is intended to make deploying IoT devices easier.

Why is Uptake for Wi-Fi HaLow Slow?

Despite the advantages laid out above, the uptake for Wi-Fi HaLow has been pretty slow. 

If you have a look on the Product Finder section of the Wi-Fi Alliance’s website, you’ll find only 3 companies that are listed as having certified Wi-Fi HaLow products. 

And if the uptake is so low, it begs the question…

So Why Use Wi-Fi HaLow?

The advantages we talked about above hint at where Wi-Fi HaLow can be used effectively. 

Wi-Fi HaLow Utilises Licence-Exempt Frequencies

As you are probably aware, the majority of Wi-Fi technologies, including Wi-Fi 5 and Wi-Fi 6, operate at frequencies in the 2.4 and 5 GHz bands. 

The difference with Wi-Fi HaLow is that it utilises licence-exempt frequencies that are below 1 GHz. 

Wi-Fi HaLow Has Longer Range

Due to Wi-Fi HaLow having lower frequencies, it also has longer signal ranges. Not only that, but the signal itself penetrates walls and other materials better. 

Due to these reasons, Wi-Fi HaLow can travel much further, even managing distances of over half a mile (0.62 miles to be precise). 

Wi-Fi HaLow Devices Don’t Hog Bandwidth and Need Less Power

Wi-Fi HaLow devices can use lower power radios as they’re not hogging bandwidth with high performance. In other words, the devices wireless connectivity uses very little power which in turn means that they have a long battery life. Some devices can even last more than 5 years! 

Got devices on the network that need more throughput? With Wi-Fi HaLow you can give hundreds (if not thousands) of IoT wireless devices their own band to operate in – Enabling you to reserve the higher bands for those higher throughput devices. This could in turn have a positive impact on your overall network performance.

In this way, Wi-Fi HaLow compliments traditional Wi-Fi very well by enabling your network engineers to move lower bandwidth clients off the main Wi-Fi network. 

Depending on the AP capabilities and client-device specifications, Wi-Fi HaLow can still provide enough throughput for HD-quality video cameras in some scenarios, despite being designed for lower bandwidth applications. 

Do We Have the Infrastructure for Wi-Fi HaLow?

In short, yes! It’s pretty straightforward to get going with Wi-Fi HaLow. 

Whereas other similar technologies require proprietary controllers, hubs or gateways, Wi-Fi HaLow doesn’t need any of this. 

It’s as simple as plugging a HaLow Ap into a traditional LAN and clients can connect to IP-based networks including the internet. 

Alternatively, they could choose a gateway device with 4G LTE connectivity to the WAN.

Does traditional Wi-Fi support HaLow?

Currently, the HaLow band is not supported by traditional Wi-Fi like 2.4 GHz and 5 GHz. 

But, due to the longer range of HaLow, an AP deployed in the right location could mean signal coverage for an entire multi-floor office building or warehouse. 

Of course, that would also depend on:

  • Desired data rates for clients
  • Transmit powers
  • Antennas
  • Interference

To take the signal even further, without using a wired connection, you can also deploy Wi-Fi HaLow in a wireless-mesh mode. 

What are the Data Rates like for Wi-Fi HaLow? 

Bandwidth can be increased via channel-width options on Wi-Fi HaLow devices just like traditional Wi-Fi. Between 1MHz and 16MHz there are 5 channel widths, but not all devices support all the widths. 

When we talk about channels, the transmissions travel further the narrower the channel is, but at a slower data rate. 

For example, for a long range over the course of 1km on just 1MHz channel, with a bit of RF attenuation, you would see a data rate of approximately 150 kbps. 

With a shorter range and/ or a line of sight, you could in theory get 86.7 Mbps with 16 MHz channels and short guard intervals. 

One trial carried out at sea with no radio interference achieved 2 Mbps of UDP throughput at 3 km with line of sight. With this in mind, with ideal conditions could expect a data rate of a few Mbps for approximately 1.5 km range. 

How is Wi-Fi HaLow Affected by Interference?

Wi-Fi HaLow aren’t not the only unlicensed users and devices on the 900 MHz band. Historically, this band was rather crowded with cordless phones as well as amateur radio operators, although whilst they have the right to use the band they are not the primary users of the band and hence have to accept interference from other sources. 

Interference when using Wi-Fi HaLow is unlikely to cause significant issues in comparison to how many Wi-Fi 5 and Wi-Fi 6 devices are using the 2.4 GHz and 5 GHz bands. 

The competition for airtime is also a lesser concern because unlike traditional Wi-Fi devices, HaLow devices tend to deliver smaller amounts of data and less frequently. 

Is Wi-Fi HaLow Secure?

Wi-Fi HaLow is just as secure as traditional Wi-Fi devices due to supporting the same WPA3 (Wi-Fi Protected Access) security and Wi-Fi Enhanced Open functionality. 

Some devices may also support the enterprise mode of WPA3 with 802.1X authentication. Some HaLow devices may also support the legacy WPA2 security even though it isn’t required for Wi-Fi Certified products.

Is HaLow ready for enterprise deployments?

Despite there being few Wi-Fi Halow devices on the market just yet, reports are saying that they are ready for enterprise deployments now. 

Our recommendation, as with any Wi-Fi network, is to carry out a Site Survey before designing and deploying a Wi-Fi HaLow network.

For many network engineers, this is a new and unfamiliar technology so it’s imperative you do plenty of live testing and analysing to make sure the network will work effectively. This is especially important if you are going to be using Wi-Fi HaLow to serve higher bandwidth clients or over long distances. 

Our Top Wi-Fi Blogs of 2021

A new year has begun, and no doubt it will bring new technology and wireless improvements with it!

Here at Geekabit, we covered a lot of different Wi-Fi topics last year here on the blog, many of which were steered by the enquiries we were receiving to our Wi-Fi Experts across Winchester, London and Cardiff. We saw a big increase in demand for 4G broadband, particularly for homes in rural areas. Hybrid broadband has also soared in popularity!

We’ve also talked a lot about 5G and Wi-Fi 6 and a few of the products already available on the market. With there still being a heavy focus on working from home throughout 2021, it’s no surprise that reliable broadband and internet speeds at home were still crucial. We even launched our own product – SpeedScore – A great way for estate agents and landlords to accurately identify their broadband speeds.

With all of this in mind, we thought we would take a look back on the last year and see what blogs were most popular with you – Our readers!

#10 – Just making the top 10 reads from 2021 is a blog on the 4G Broadband Teltonika RUT950 router. This device was out top product for 4G broadband installations during 2021 – Click the blog to find out why.

4G Broadband and the Teltonika RUT950 Industrial Cellular Router

#9 – Continuing on the 4G broadband theme, in at number 9 is why 4G broadband could be the answer for all your rural Wi-Fi woes. 2021 brought us many clients desperate for a quicker Wi-Fi service in rural areas, particularly those who had moved out of London but expected the same internet connectivity. If you’re sticking with more working-from-home as we move into 2022, then have a read of this blog to see if 4G broadband could bring you a better connection.

4G Broadband – The Answer to Your Rural Wi-Fi Woes?

#8 – Last year we saw a big buzz around 5G. This blog was all about the Robustel R5020 router – An exciting product offering 5G connectivity at a competitive price.

The Robustel R5020 5G Router

#7 – We can’t talk about 4G broadband without talking about data plans. Joining in on the blog popularity of 4G/5G broadband and pieces of kit was this blog on Unlimited 4G broadband data plans. well worth a read if you’re going down the 4G broadband route.

The Best Unlimited 4G Data Plans for Broadband

#6 – Which brings us nicely to hybrid broadband. This has seen a soar in popularity, and we’re expecting to see a lot more of this in client enquiries over this coming year. But what is hybrid broadband? If you’re wanted unbreakable Wi-Fi for your home or business then this could well be the solution you’ve been searching for.

 

What is Hybrid Broadband?

#5 – 2021 saw Facebook launch it’s own Wi-Fi – But what is it? Hundreds of thousands of businesses are already using it, but if you’re not yet one of them then click the blog below to see what you need to know.

What is Facebook Wi-Fi?

#4 – Anything to do with Ubiquiti always proves a popular blog topic. And with good reason – These devices are one of the staple pieces of kit here at Geekabit. The Ubiquiti UniFi range of access points are always easy to match to our clients needs.

How Do I Choose The Right Ubiquiti UniFi Access Point?

#3 – Wi-Fi 6 was another topic on everyone’s lips last year. This blog on the Amplifi Alien Wi-Fi 6 router was a big favourite of our readers – Could that be because of the ongoing need to work and learn from home?

Amplifi Alien – The New Wi-Fi 6 Router from Ubiquiti

#2 – How do you choose the right wireless product for your home or business? It’s a question often asked so no wonder this blog looking at 3 top wireless products almost made the top spot. If you want to compare UniFi, Meraki and Aruba bits of wireless kit then this is the blog for you.

UniFi vs Meraki vs Aruba

#1 – And here we are at number one. The most popular blog last year was this one on Starlink and what it meant for broadband here in the UK. another interesting read, particularly those living and working in more rural areas, struggling with connectivity.

What is Starlink and what does it mean for UK broadband?

So there you go – Our top ten Wi-Fi blogs of 2021. We’re excited to see what 2022 will bring!

 

Do I Need a Wi-Fi 6 Router?

Don’t suffer with the buffer! If you’re finding that your Netflix binge is being interrupted by buffering, or your Zoom calls keep freezing or pixelating then it’s a good idea to make sure that your router isn’t the culprit.

If you’re looking for fast, reliable broadband, then Wi-Fi 6 could be just what you’re looking for. Last time we blogged about the improvements from Wi-Fi 5 that Wi-Fi 6 will be bringing. If that hooks you in then read on and see whether a Wi-Fi 6 router might end up being a great investment for your business or household.

Wi-Fi 6 is specifically designed to improve the performance of your home network and increase network capacity. This latest generation of Wi-Fi standard will offer your home faster Wi-Fi speeds and a more reliable connection. What does this mean in real times? It means buffer-free streaming on Netflix (and other platforms) and quicker downloads – Even if your house is device heavy, it won’t slow down your internet.

More and more internet devices are Wi-Fi 6 ready, but will only work to their optimum if there is also a Wi-Fi 6 router in place. (Likewise, a Wi-Fi 6 router will only offer Wi-Fi 6 improvements for devices enabled with Wi-Fi 6 technology).

We thought we would share some of the reasons why you might want to consider a Wi-Fi 6 router next time you’re in the market for one (or even if you’re not!. )

My household has multiple devices – What will Wi-Fi 6 provide me in comparison to Wi-Fi 5?

Wi-Fi 6 will provide you with the highest level of performance, even in a device-heavy household.

Wi-Fi 5 provided us with great technology – Wi-Fi 6 is an extension of that. Whilst Wi-Fi 5 brought us gigabit speeds, it begins to fall short in homes where there are more and more devices being added. How many devices do you have in your home that connect to the Wi-Fi? Count them and we think you’ll be surprised! And this is only going to increase over time. Wi-Fi 6 helps with this because it uses OFDMA (orthogonal frequency division multiple access). This key feature means that it can increase your overall network efficiency by allowing several devices to connect to your Wi-Fi with various bandwidths.

What real-world speeds and range will Wi-Fi 6 provide?

Wi-Fi 6 will deliver the fastest real-world speeds.

Wi-Fi data travels on component streams on each of the frequency bands 2.4 GHz and 5GHz. Wi-Fi 5 and Wi-Fi 6 can carry the highest amount of streams, which allows for gigabit Wi-Fi speeds. Where Wi-Fi 6 goes further is that it increases the number of streams to 12 – A new high across the 2.4 and 5GHz bands. In comparison, Wi-Fi 5 only has a limit of 8 in a dual band configuration.

How do these streams affect your Wi-Fi? Not only does this increase in streams mean that you have access to a higher connection speed, it also means that your devices can communicate with your router via more paths. Compared to Wi-Fi 5 enabled devices, Wi-Fi 6 show an 40% increase in speed.

How is Wi-Fi 6 designed for the ‘Smart Home’?

Our homes are now full of smart devices. We can control the heating and the lights with the tap of a button on our phones. We can ask the postman to leave the parcel by the gate via our video doorbell. We turn music on via Alexa and we add to our shopping list by shouting Hey Google. We have smart TV’s as well as numerous laptops, tablets and smartphones all vying for a connection to the Wi-Fi. That’s a lot of devices. In fact, the average number of devices in the home has gone from 10 up to as many as 50. All of these put a load on your network.

Where does Wi-Fi 6 come in? Well, it’s been specifically designed to handle this demand on your Wi-Fi through the increase in devices – Without negatively impacting your internet speeds.

How will this affect your home? This improvement in internet speed will provide more reliability – Vital if you’re depending on it for your lights, thermostat and other IoT devices. The last thing you want with all these devices running is interrupted connectivity. Thankfully, Wi-Fi 6 will help with that

How will Wi-Fi 6 help with video streaming?

A Wi-Fi 6 router would be ideal for 4K/8K UHD streaming.

If you’ve tried to stream 4K or 8K video, then you’ll know it requires a constant high-speed connection. In busy, device-heavy households where everyone is trying to stream high-definition video you’re likely to start seeing buffering – It’s a big load on the network.

Wi-Fi 6 routers could help with all that thought. Annoying buffering will be a thing of the past due to a Wi-Fi 6 router’s ultra-fast processors, increased number of radio streams and increased memory.

You should find that Wi-Fi 6 routers will make streaming of HD video across multiple devices a lot better than older Wi-Fi technology.

Are Wi-Fi 6 products available now?

Yes – They’re already here! Future upgrades to smartphones, tablets and laptops will see the rise of Wi-Fi 6 enabled technology, so getting a Wi-Fi 6 router will mean you’re ready to benefit from all the improvements that Wi-Fi 6 has to offer – Like faster Wi-Fi speeds!

The great thing is that WI-Fi 6 routers will also work for Wi-Fi 5 devices (without the improvements) so it’s a great crossover for whilst you’re upgrading devices.

The Wi-Fi 6 portfolio of products is only going to get bigger, so consider whether a switch to a Wi-Fi 6 router would be a worthwhile investment for your home.

 

What’s Different About Wi-Fi 6?

Wondering what all the fuss is about when it comes to Wi-Fi 6? If you’re questioning what the differences are and whether it’s worth making hardware device changes, then read on.

The next generation of wireless standard is here (actually, it’s been here since the end of 2019). Wi-Fi 6, or 802.11ax has the following main differences:

  • It’s faster
  • It provides better performance in congested areas (think anything from your own device-packed home, to stadiums)

We know it informally as Wi-Fi 6 – Wi-Fi versions have now been assigned simple numbers to replace the more complicated code-like names that we saw before.

What are the Wi-Fi Version Numbers?

The new Wi-Fi version numbers are much more user friendly, but for the fellow geeks among us, here are what the new version numbers correspond to, plus (whilst not being officially branded) what all of the old versions would have been.

Wi-Fi 1 – 802.11b (released in 1999)

Wi-Fi 2 – 802.11a (also released in 1999)

Wi-Fi 3 – 802.11g (released in 2003)

Wi-Fi 4 – 802.11n (released in 2009)

Wi-Fi 5 – 802.11ac (released in 2014)

Wi-Fi 6 – 802.11ax (released in 2019)

You might start to see these newer version numbers appear in software when connecting your smartphone, tablet or laptop, to enable you to see which Wi-Fi networks are newer and faster. This is what the Wi-Fi Alliance announced that they would like to be seeing across networks. It’s worth noting that it isn’t mandatory for manufacturers to label their products with Wi-Fi 6 instead of 802.11ax, but we’re hopeful that most will. Re-naming products from 802.11ac to Wi-Fi 5 might be another matter though!

Wi-Fi That’s Faster

As with most technological advances, the latest development in Wi-Fi standard is faster in terms of data transfer speeds. In comparison to Wi-Fi 5, a Wi-Fi 6 router would provide one device with up to 40% higher speeds.

What Makes Wi-Fi 6 Faster?

The reason Wi-Fi 6 can achieve such faster speeds is due to more efficient data coding which thus results in higher throughput. Basically, the radio waves are packed with more data. With each Wi-Fi standard, the ability for the chips to encode and decode the data gets more powerful, hence why Wi-Fi 6 is faster than Wi-Fi 5, and can handle extra work.

You may be aware that we have 2 frequenceis used for networks – 5GHz and 2.4GHz. 5GHz is more commonly used as it is subject to less interference, however 2.4GHz is still a good option for being able to penetrate solid objects. Wi-Fi 6, the new standard, even increases speeds on these 2.4GHz networks.

How Will Wi-Fi 6 Affect the Battery Life on my Device?

Many Wi-Fi 6 enabled devices will have a new ‘target wake time’ feature. This means that an access point can define a specific set of times when devices connected to the internet need to have access to the wireless network. This new efficiency should mean that your Wi-Fi enables devices should have a longer battery life.

Let’s take your smartphone, for example. When the AP is talking to your phone, it can tell it when to put it’s Wi-Fi radio to sleep and when to wave it up to receive the next transmission. Because your device can spend more time in sleep mode, you should find your battery lasts longer.

It also means that devices that connect via Wi-Fi with lower power can benefit from longer battery life.

Wi-Fi That Performs Better in Crowded Areas

We know there hasn’t been much opportunity for it as late, but picture trying to get online at an airport, hotel or live event at a stadium. When an area is as congested with devices as these, you can suffer with slow Wi-Fi and even struggle to connect.

Wi-Fi 6 tackles just this problem. With new technology, superior to previous Wi-Fi standards, it’s purported that Wi-Fi 6 will improve the average speed of each user by at least 4 times. Even in crowded areas with lots of devices.

This isn’t just something that will benefit you when out in public places – It could be a huge help in your home as well. If you have a large family all with multiple devices connected to Wi-Fi, then this could be just the solution to stop the slow-down. Or perhaps if you live in a densely populated place, like a block of flats.

How Does Wi-Fi 6 Tackle Congestion from Multiple Devices?

There are various features that help Wi-Fi 6 better tackle the problem of heavily crowded networks. Just knowing that a Wi-Fi 6 device connected to a Wi-Fi 6 access point will work better may well be enough for you!

For those who want all the geeky details, here’s what’s going on to make Wi-Fi 6 better for networks with multiple or many devices.

Wi-Fi 6 technology is able to create a large number of sub-channels within one wireless channel. Date intended for each individual device can be carried by each sub-channel. This technology is called Orthogonal Frequency Division Multiple Access (OFDMA). Essentially this means that a Wi-Fi 6 enabled access point can talk to more devices at once.

Wi-Fi 6 also has improved MultipleIn/Multiple Out (MIMO). Again, this lets the access point talk to multiple devices at once through multiple antennas. The difference between this and Wi-Fi 5, is that while the latter enabled an access point to talk to multiple devices at the same time, it couldn’t allow the devices to respond at the same time, thus slowing things down. The new improved MIMO on Wi-Fi 6 is a multi-user version (MU-MIMO) which enables devices to respond to the access point at the same time.

Let’s look at another potential scenario. Wireless access points that are locating close to one another may transmit on the same channel. This means that the radio needs to listen and wait for a clear signal before it can reply. Wi-Fi 6 uses spatial frequency re-use which allows you to configure Wi-Fi 6 wireless access points with different Basic Service Set (BSS) colours, which consists of a number between 0 and 7. The device can then determine whether a particular channel has a weaker signal, and thus ignore it and transmit without waiting. This is another way in which Wi-Fi 6 will improve wireless performance in congested areas.

These are just a couple of the improvements to be seen from the new Wi-Fi 6 standard. There are many more, smaller enhancements which will improve the speed and performance with Wi-Fi 6.

How Do I Know If Something has Wi-Fi 6?

Luckily, thanks to this handy article, you’re now familiar with all the technical names of the different Wi-Fi standards, so you’ll know exactly what to look for. Right? Don’t panic! We’re only kidding. Thanks to the new versions, it’ll be easy for you to find devices that are certified Wi-Fi 6 (rather than hunting around for 802.11ax!). Device manufacturers are able to say whether their product is Wi-Fi 6 or Wi-Fi 5.

You may also start to see a logo saying ‘Wi-Fi 6 Certified’ on relevant devices. This means that the product has gone through the Wi-Fi Alliance’s certification process. The old Wi-Fi Certified logo simply told you it was Wi-Fi Certified, rather than what generation of Wi-Fi a product was. The new logo will make it clear if it is Wi-Fi 6. So there will be no need for trawling through product specifications!

When Can I Get Wi-Fi 6 Enabled Devices?

The new Wi-Fi 6 standard was finalised in 2019, with hardware being released in the latter part of the same year and into 2020. So you should be seeing Wi-Fi 6 enabled products in the market now. It’s shouldn’t be something you need to put too much thought into – As new routers, smartphones, tables and laptops are released into the market, they will just start to come with this new Wi-Fi 6 technology.

It’s worth remembering that to benefit from the improvements on the new Wi-Fi 6 standard, you need both the sender and receiver devices to support this latest generation of Wi-Fi 6. Whatever the connection, it will only operate in the mode that your device supports. For example, you may have a Wi-Fi 6 enabled router, a Wi-Fi 6 enabled smartphone, but a laptop that only supports Wi-Fi 5. You’ll see the advantages of Wi-Fi 6 on your smartphone, but the laptop will only work at Wi-Fi 5 capacity.